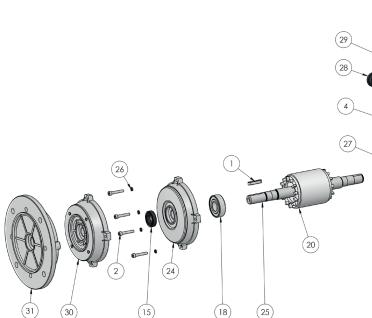
# MOTORIASINCRONI TRIFASE JM-GM IE4







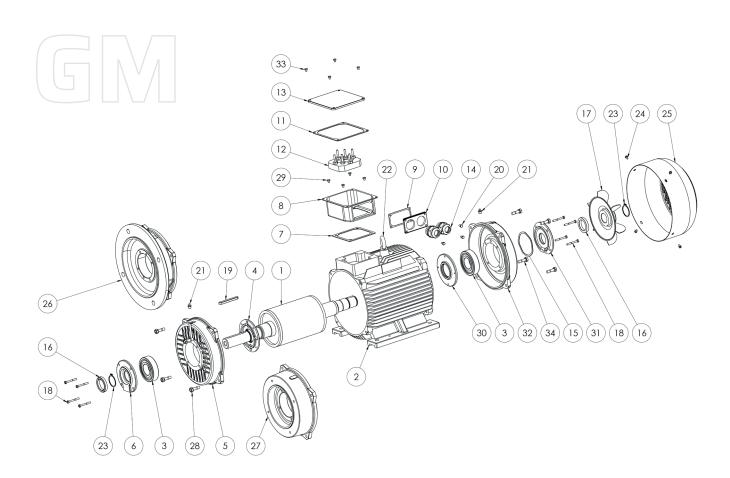
## 6.1 COMPONENTI

#### **SERIE JM**

Motori serie JM taglia da 56 a 160, in alluminio, con piedi rimovibili per un agevole cambio di forma costruttiva.






- 1) Linguetta
- 2) Tirante
- 3) Guarnizione scatola morsettiera
- 4) Vite fissaggio scatola morsettiera
- 5) Vite fissaggio coprimorsettiera
- 6) Coprimorsettiera
- 7) Pressacavo
- 8) Morsettiera
- 9) Vite fissaggio morsettiera
- 10) Scatola morsettiera
- 11) Dado
- 12) Scudo B3 lato opposto comando
- 13) Molla di precarico
- 14) Ventola
- 15) Anello di tenuta
- 16) Anello elastico di sicurezza

- 17) Copriventola
- 18) Cuscinetti
- 19) Vite fissaggio copriventola
- 20) Rotore
- 21) Vite fissaggio piede per IMB3
- 22) Carcassa
- 23) Piede per IMB3
- 24) Scudo lato comando per IMB3
- 25) Albero
- 26) Rondella
- 27) Statore
- 28) Tappo
- 29) Guarnizione coperchio scatola morsettiera
- 30) Flangia IMB14
- 31) Flangia IMB5



#### **SERIE GM**

Motori Serie GM da taglia 160 a 450, in ghisa, con piedi in fusione.

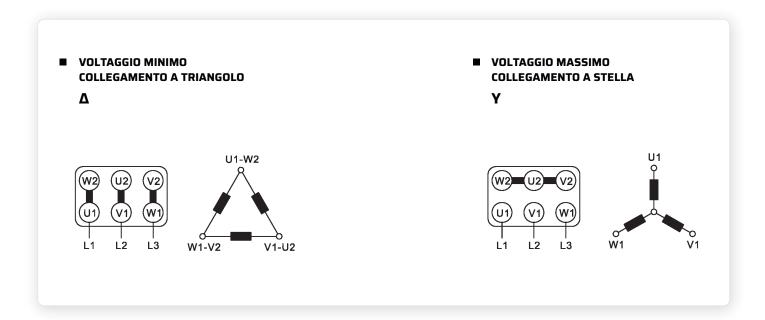


- 1) Albero con rotore
- 2) Carcassa
- 3) Cuscinetto
- 4) Flangia interna bloccaggio cuscinetto lato comando
- 5) Scudo lato comando IMB3
- 6) Flangia esterna bloccaggio cuscinetto lato comando
- 7) Guarnizione scatola morsettiera
- 8) Scatola morsettiera
- 9) Guarnizione mostrina scatola morsettiera
- 10) Mostrina scatola morsettiera
- 11) Guarnizione coperchio scatola morsettiera
- 12) Morsettiera
- 13) Coperchio scatola morsettiera
- 14) Pressacavo
- 15) Molla di precarico
- 16) Anello di tenuta
- 17) Ventola
- 18) Vite fissaggio flangia esterna bloccaggio cuscinetto

- 19) Linguetta
- 20) Vite mostrina scatola morsettiera
- 21) Ingrassatore
- 22) Golfare di sollevamento
- 23) Anello elastico di sicurezza
- 24) Vite fissaggio copriventola
- 25) Copriventola
- 26) Flangia IMB5
- 27) Flangia IMB14 (solo grandezza GM 160)
- 28) Vite fissaggio scudo IMB3 lato comando
- 29) Vite fissaggio scatola morsettiera
- 30) Flangia interna bloccaggio cuscinetto lato opposto comando
- 31) Flangia esterna bloccaggio cuscinetto lato opposto comando
- 32) Scudo lato opposto comando IMB3
- 33) Vite fissaggio coperchio scatola morsettiera
- 34) Vite fissaggio scudo IMB3 lato opposto comando



## 6.2 COLLEGAMENTI ELETTRICI


Gli avvolgimenti dei motori trifase a singola velocità possono essere collegati a stella o triangolo.

Il collegamento a triangolo si ottiene collegando la fine di una fase con l'inizio della fase successiva. La corrente di fase  $I_{ph}$  e la tensione di fase  $U_{ph}$  sono rispettivamente:  $I_{ph} = I_n / V3$ ;  $U_{ph} = U_n$ 

Dove  $I_n$  e è la corrente di linea e  $U_n$  la tensione di linea relativa al collegamento a triangolo.

Il collegamento a stella si ottiene collegando W2, U2 e V2 e alimentando U1, V1, W1. La corrente di fase  $I_{ph}$  e la tensione di fase  $U_{ph}$  sono rispettivamente:  $I_{ph} = I_n$ ;  $U_{ph} = U_n / \sqrt{3}$ 

Dove In e Un si riferiscono al collegamento a stella.



L'avviamento del motore stella-triangolo consente di ridurre la corrente di spunto riducendo la coppia di spunto, e può essere quindi adottata solamente se la coppia di spunto ottenuta è superiore alla coppia resistente. La coppia di spunto di un motore asincrono è direttamente proporzionale al quadrato della tensione, pertanto i motori la cui tensione nominale a triangolo corrisponde alla tensione di rete possono essere avviati col metodo stellatriangolo.



# MOTORI ASINCRONI TRIFASE IE4 JM-GM

| Grandezza       | JM | Grandezza    | GM |
|-----------------|----|--------------|----|
| 80 ~ 160        |    | 160 ~ 355    |    |
| Potenza         | JM | Potenza      | GM |
| 0.75 ~ 18.5 kW  |    | 11 ~ 315 kW  |    |
| <u>Polarità</u> | JM | Polarità     | GM |
| 2, 4, 6 poli    |    | 2, 4, 6 poli |    |



























# • 6.3 DATI ELETTRICI JM IE4

#### **SERIE JM 2 POLI IE4**

Tab. 6.3.1

| IE4          | Motore | $\mathbf{P}_{\mathrm{N}}$ | n <sub>N</sub> | $T_N$ | I <sub>N (400 V)</sub> | COSφ |      | η    |      | I <sub>s</sub> | T <sub>s</sub> | $T_{\max}$     | J      | Peso |
|--------------|--------|---------------------------|----------------|-------|------------------------|------|------|------|------|----------------|----------------|----------------|--------|------|
| 112-4        | JM     | kW                        | min-1          | Nm    | Α                      |      | 100% | 75%  | 50%  | I <sub>N</sub> | T <sub>N</sub> | T <sub>N</sub> | Kg m²  | Kg   |
| N            | 80 a   | 0,75                      | 2910           | 2,46  | 1,58                   | 0,82 | 83,5 | 83,5 | 81,8 | 7,0            | 2,3            | 2,3            | 0,0013 | 11   |
| 50Hz         | 80 b   | 1,1                       | 2920           | 3,60  | 2,25                   | 0,83 | 85,2 | 85,2 | 83,5 | 7,3            | 2,2            | 2,3            | 0,0016 | 11,6 |
| 700          | 90 S   | 1,5                       | 2930           | 4,89  | 2,98                   | 0,84 | 86,5 | 86,5 | 84,8 | 7,6            | 2,2            | 2,3            | 0,0018 | 16   |
| 30/4         | 90 La  | 2,2                       | 2930           | 7,17  | 4,25                   | 0,85 | 88,0 | 88,0 | 86,2 | 7,6            | 2,2            | 2,3            | 0,0024 | 20,6 |
| ∆/Y 230/400V | 100 La | 3                         | 2935           | 9,8   | 5,59                   | 0,87 | 89,1 | 89,1 | 87,3 | 7,8            | 2,2            | 2,3            | 0,0040 | 24,5 |
| 7            | 112 Ma | 4                         | 2940           | 13,0  | 7,29                   | 0,88 | 90,0 | 90,0 | 88,2 | 8,3            | 2,2            | 2,3            | 0,0080 | 42   |
|              | 132 Sa | 5,5                       | 2945           | 17,8  | 9,92                   | 0,88 | 90,9 | 90,9 | 89,1 | 8,3            | 2,0            | 2,3            | 0,0180 | 46   |
| 50Hz         | 132 Sb | 7,5                       | 2950           | 24,3  | 13,40                  | 0,88 | 91,7 | 91,7 | 89,9 | 7,9            | 2,0            | 2,3            | 0,0240 | 52   |
| 400V         | 160 Ma | 11                        | 2960           | 35,5  | 19,30                  | 0,89 | 92,6 | 92,6 | 90,7 | 8,1            | 2,0            | 2,3            | 0,0480 | 95   |
| D 4(         | 160Mb  | 15                        | 2960           | 48,4  | 26,10                  | 0,89 | 93,3 | 93,3 | 91,4 | 8,1            | 2,0            | 2,3            | 0,0600 | 103  |
|              | 160 La | 18,5                      | 2960           | 59,7  | 32,00                  | 0,89 | 93,7 | 93,7 | 91,8 | 8,2            | 2,0            | 2,3            | 0,0708 | 115  |

#### **SERIE JM 4 POLI IE4**

Tab. 6.3.2

| IE4      | Motore | P <sub>N</sub> | n <sub>N</sub> | T <sub>N</sub> | I <sub>N (400 V)</sub> | COSφ |      | η    |      | I <sub>s</sub> | T <sub>s</sub> | T <sub>max</sub> | J      | Peso |
|----------|--------|----------------|----------------|----------------|------------------------|------|------|------|------|----------------|----------------|------------------|--------|------|
|          | JM     | kW             | min-1          | Nm             | Α                      |      | 100% | 75%  | 50%  | I <sub>N</sub> | T <sub>N</sub> | T <sub>N</sub>   | Kg m²  | Kg   |
| Z        | 80 b   | 0,75           | 1430           | 5,01           | 1,68                   | 0,75 | 85,7 | 85,7 | 84,0 | 6,6            | 2,3            | 2,3              | 0,0031 | 12,9 |
| 50Hz     | 90 S   | 1,1            | 1445           | 7,27           | 2,40                   | 0,76 | 87,2 | 87,2 | 85,5 | 6,8            | 2,3            | 2,3              | 0,0037 | 16,8 |
| 700      | 90 La  | 1,5            | 1450           | 9,88           | 3,19                   | 0,77 | 88,2 | 88,2 | 86,4 | 7,0            | 2,3            | 2,3              | 0,0044 | 20   |
| 230/400V | 100 La | 2,2            | 1455           | 14,4           | 4,38                   | 0,81 | 89,5 | 89,5 | 87,7 | 7,6            | 2,3            | 2,3              | 0,0076 | 26   |
| Δ/Υ 2    | 100 Lb | 3              | 1455           | 19,7           | 5,84                   | 0,82 | 90,4 | 90,4 | 88,6 | 7,6            | 2,3            | 2,3              | 0,0095 | 31,3 |
| 7        | 112 Ma | 4              | 1460           | 26,2           | 7,73                   | 0,82 | 91,1 | 91,1 | 89,3 | 7,8            | 2,2            | 2,3              | 0,0134 | 39,2 |
| 50Hz     | 132 Sa | 5,5            | 1470           | 35,7           | 10,40                  | 0,83 | 91,9 | 91,9 | 90,1 | 7,9            | 2,0            | 2,3              | 0,0305 | 51,2 |
| V 50     | 132 Ma | 7,5            | 1470           | 48,7           | 13,90                  | 0,84 | 92,6 | 92,6 | 90,7 | 7,5            | 2,0            | 2,3              | 0,0415 | 65   |
| 400V     | 160 Ma | 11             | 1475           | 71,2           | 20,00                  | 0,85 | 93,3 | 93,3 | 91,4 | 7,7            | 2,2            | 2,3              | 0,0988 | 97,3 |
| ◁        | 160 La | 15             | 1475           | 97,1           | 26,80                  | 0,86 | 93,9 | 93,9 | 92,0 | 7,8            | 2,2            | 2,3              | 0,1160 | 109  |

#### **SERIE JM 6 POLI IE4**

Tab. 6.3.3

| IE4              | Motore | $\mathbf{P}_{\mathbf{N}}$ | n <sub>N</sub>    | $T_N$ | I <sub>N (400 V)</sub> | COSφ |      | η    |      | I <sub>s</sub> | T <sub>s</sub> | T <sub>max</sub> | J      | Peso |
|------------------|--------|---------------------------|-------------------|-------|------------------------|------|------|------|------|----------------|----------------|------------------|--------|------|
|                  | JM     | kW                        | min <sup>-1</sup> | Nm    | Α                      |      | 100% | 75%  | 50%  | I <sub>N</sub> | T <sub>N</sub> | T <sub>N</sub>   | Kg m²  | Кд   |
| >                | 90 S   | 0,75                      | 950               | 7,54  | 1,84                   | 0,71 | 82,7 | 82,7 | 81,0 | 6,0            | 2,0            | 2,1              | 0,0042 | 17,2 |
| 230/400V<br>50Hz | 90 La  | 1,1                       | 955               | 11,0  | 2,57                   | 0,73 | 84,5 | 84,5 | 82,8 | 6,0            | 2,0            | 2,1              | 0,0047 | 22,4 |
| Y 23(            | 100 La | 1,5                       | 960               | 14,9  | 3,45                   | 0,73 | 85,9 | 85,9 | 84,2 | 6,5            | 2,0            | 2,1              | 0,0090 | 33,5 |
| ΔV               | 112 Ma | 2,2                       | 965               | 21,8  | 4,91                   | 0,74 | 87,4 | 87,4 | 85,7 | 6,6            | 2,0            | 2,1              | 0,0170 | 38,6 |
|                  | 132 Sa | 3                         | 970               | 29,5  | 6,60                   | 0,74 | 88,6 | 88,6 | 86,8 | 6,8            | 2,0            | 2,1              | 0,0310 | 46   |
| 50Hz             | 132 Ma | 4                         | 975               | 39,2  | 8,72                   | 0,74 | 89,5 | 89,5 | 87,7 | 6,8            | 2,0            | 2,1              | 0,0380 | 54   |
| 400V             | 132 Mb | 5,5                       | 975               | 53,9  | 11,70                  | 0,75 | 90,5 | 90,5 | 88,7 | 7,0            | 2,0            | 2,1              | 0,0480 | 61,8 |
| D4 40            | 160 Ma | 7,5                       | 980               | 73,1  | 15,00                  | 0,79 | 91,3 | 91,3 | 89,5 | 7,0            | 2,0            | 2,1              | 0,0950 | 88,3 |
|                  | 160 La | 11                        | 980               | 107,2 | 21,50                  | 0,80 | 92,3 | 92,3 | 90,5 | 7,2            | 2,0            | 2,1              | 0,1200 | 125  |



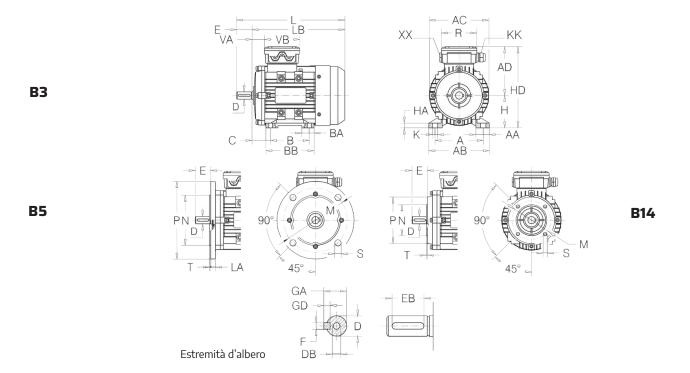
# • 6.4 DATI ELETTRICI GM IE4

SERIE GM 2 POLI IE4 Tab. 6.4.1

| IE4       | Motore | P <sub>N</sub> | n <sub>N</sub> | T <sub>N</sub> | I <sub>N (400 V)</sub> | COSφ |      | η    |      | I <sub>s</sub> | T <sub>s</sub> | T <sub>max</sub> | J      | Peso |
|-----------|--------|----------------|----------------|----------------|------------------------|------|------|------|------|----------------|----------------|------------------|--------|------|
| 112-4     | GM     | kW             | min-1          | Nm             | Α                      |      | 100% | 75%  | 50%  | I <sub>N</sub> | T <sub>N</sub> | T <sub>N</sub>   | Kg m²  | Кд   |
|           | 160 Ma | 11             | 2960           | 35,49          | 19,3                   | 0,89 | 92,6 | 92,6 | 90,7 | 8,1            | 2,0            | 2,3              | 0,0480 | 133  |
|           | 160 Mb | 15             | 2960           | 48,39          | 26,1                   | 0,89 | 93,3 | 93,3 | 91,4 | 8,1            | 2,0            | 2,3              | 0,0600 | 146  |
|           | 160 La | 18,5           | 2960           | 59,68          | 32,0                   | 0,89 | 93,7 | 93,7 | 91,8 | 8,2            | 2,0            | 2,3              | 0,0708 | 160  |
|           | 180 M  | 22             | 2965           | 70,85          | 38,0                   | 0,89 | 94,0 | 94,0 | 92,1 | 8,2            | 2,0            | 2,3              | 0,1116 | 221  |
|           | 200 La | 30             | 2970           | 96,46          | 51,5                   | 0,89 | 94,5 | 94,5 | 92,6 | 7,6            | 2,0            | 2,3              | 0,1680 | 260  |
|           | 200 Lb | 37             | 2970           | 118,96         | 63,3                   | 0,89 | 94,8 | 94,8 | 92,9 | 7,6            | 2,0            | 2,3              | 0,1956 | 309  |
| Z         | 225 M  | 45             | 2975           | 144,44         | 76,0                   | 0,90 | 95,0 | 95,0 | 93,1 | 7,7            | 2,0            | 2,3              | 0,2940 | 370  |
| 400V 50Hz | 250 M  | 55             | 2975           | 176,54         | 92,6                   | 0,90 | 95,3 | 95,3 | 93,4 | 7,7            | 2,0            | 2,3              | 0,4000 | 520  |
| 400       | 280 S  | 75             | 2980           | 240,33         | 126                    | 0,90 | 95,6 | 95,6 | 93,7 | 7,1            | 1,8            | 2,3              | 0,7800 | 570  |
| ◁         | 280 M  | 90             | 2982           | 288,21         | 151                    | 0,90 | 95,8 | 95,8 | 93,9 | 7,1            | 1,8            | 2,3              | 0,8520 | 630  |
|           | 315 S  | 110            | 2980           | 352,49         | 184                    | 0,90 | 96,0 | 96,0 | 94,1 | 7,1            | 1,8            | 2,3              | 1,5600 | 985  |
|           | 315 M  | 132            | 2980           | 422,99         | 220                    | 0,90 | 96,2 | 96,2 | 94,3 | 7,1            | 1,8            | 2,3              | 2,4000 | 1050 |
|           | 315 Mb | 160            | 2980           | 512,71         | 264                    | 0,91 | 96,3 | 96,3 | 94,4 | 7,2            | 1,8            | 2,3              | 2,8200 | 1160 |
|           | 315 Lb | 200            | 2980           | 640,89         | 329                    | 0,91 | 96,5 | 96,5 | 94,6 | 7,2            | 1,8            | 2,2              | 3,2400 | 1200 |
|           | 355 M  | 250            | 2985           | 799,77         | 411                    | 0,91 | 96,5 | 96,5 | 94,6 | 7,2            | 1,6            | 2,2              | 4,0800 | 2050 |
|           | 355 L  | 315            | 2985           | 1007,71        | 518                    | 0,91 | 96,5 | 96,5 | 94,6 | 7,2            | 1,6            | 2,2              | 4,6800 | 2380 |

SERIE GM 4 POLI IE4 Tab. 6.4.2

| IE4       | Motore | P <sub>N</sub> | n <sub>N</sub>    | T <sub>N</sub> | I <sub>N (400 V)</sub> | COSφ |      | η    |      | I <sub>s</sub> | T <sub>s</sub> | T <sub>max</sub> | ı       | Peso |
|-----------|--------|----------------|-------------------|----------------|------------------------|------|------|------|------|----------------|----------------|------------------|---------|------|
| 112-4     | GM     | kW             | min <sup>-1</sup> | Nm             | Α                      |      | 100% | 75%  | 50%  | I <sub>N</sub> | T <sub>N</sub> | $T_{N}$          | Kg m²   | Kg   |
|           | 160 Ma | 11             | 1475              | 71,22          | 20,0                   | 0,85 | 93,3 | 93,3 | 91,4 | 7,7            | 2,2            | 2,3              | 0,0988  | 146  |
|           | 160 La | 15             | 1475              | 97,11          | 26,8                   | 0,86 | 93,9 | 93,9 | 92,0 | 7,8            | 2,2            | 2,3              | 0,1160  | 156  |
|           | 180 M  | 18,5           | 1480              | 119,37         | 33,0                   | 0,86 | 94,2 | 94,2 | 92,3 | 7,8            | 2,0            | 2,3              | 0,1720  | 181  |
|           | 180 L  | 22             | 1480              | 141,95         | 39,1                   | 0,86 | 94,5 | 94,5 | 92,6 | 7,8            | 2,0            | 2,3              | 0,2050  | 210  |
|           | 200 La | 30             | 1480              | 193,57         | 53,1                   | 0,86 | 94,9 | 94,9 | 93,0 | 7,3            | 2,0            | 2,3              | 0,3360  | 280  |
|           | 225 S  | 37             | 1485              | 237,93         | 65,2                   | 0,86 | 95,2 | 95,2 | 93,3 | 7,4            | 2,0            | 2,3              | 0,5250  | 373  |
| ZH        | 225 M  | 45             | 1485              | 289,37         | 79,2                   | 0,86 | 95,4 | 95,4 | 93,5 | 7,4            | 2,0            | 2,3              | 0,5980  | 390  |
| 400V 50Hz | 250 M  | 55             | 1485              | 353,68         | 96,5                   | 0,86 | 95,7 | 95,7 | 93,8 | 7,4            | 2,2            | 2,3              | 0,8420  | 553  |
| 400,      | 280 S  | 75             | 1490              | 480,67         | 128                    | 0,88 | 96,0 | 96,0 | 94,1 | 6,9            | 2,0            | 2,3              | 1,4760  | 655  |
| ◁         | 280 M  | 90             | 1490              | 576,80         | 154                    | 0,88 | 96,1 | 96,1 | 94,2 | 6,9            | 2,0            | 2,3              | 1,8060  | 730  |
|           | 315 S  | 110            | 1490              | 704,98         | 185                    | 0,89 | 96,3 | 96,3 | 94,4 | 7,0            | 2,0            | 2,2              | 4,2460  | 980  |
|           | 315 M  | 132            | 1490              | 845,98         | 222                    | 0,89 | 96,4 | 96,4 | 94,5 | 7,0            | 2,0            | 2,2              | 4,4530  | 1031 |
|           | 315 Mb | 160            | 1490              | 1025,43        | 269                    | 0,89 | 96,6 | 96,6 | 94,7 | 7,1            | 2,0            | 2,2              | 5,1240  | 1093 |
|           | 315 Lb | 200            | 1490              | 1281,78        | 332                    | 0,90 | 96,7 | 96,7 | 94,8 | 7,1            | 2,0            | 2,2              | 6,1000  | 1240 |
|           | 355 M  | 250            | 1490              | 1602,23        | 415                    | 0,90 | 96,7 | 96,7 | 94,8 | 7,1            | 2,0            | 2,2              | 8,4180  | 1754 |
|           | 355 L  | 315            | 1490              | 2018,81        | 522                    | 0,90 | 96,7 | 96,7 | 94,8 | 7,1            | 2,0            | 2,2              | 10,6140 | 1960 |




SERIE GM 6 POLI IE4 Tab. 6.4.3

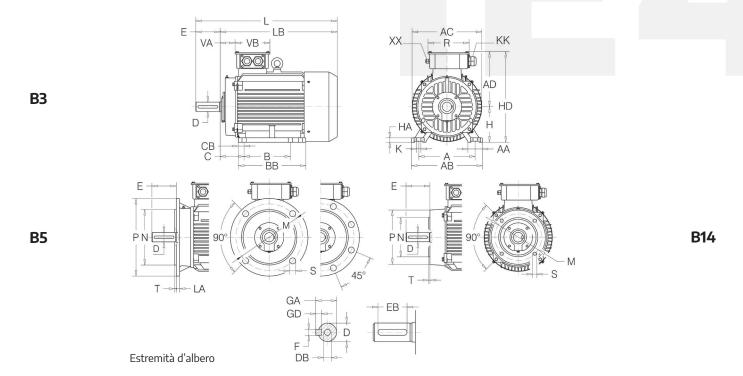
| IE4         | Motore | P <sub>N</sub> | n <sub>N</sub> | T <sub>N</sub> | I <sub>N (400 V)</sub> | COSφ |      | η    |      | I <sub>s</sub> | T <sub>s</sub> | T <sub>max</sub> | J       | Peso |
|-------------|--------|----------------|----------------|----------------|------------------------|------|------|------|------|----------------|----------------|------------------|---------|------|
| 112-7       | GM     | kW             | min-1          | Nm             | Α                      |      | 100% | 75%  | 50%  | I <sub>N</sub> | T <sub>N</sub> | T <sub>N</sub>   | Kg m²   | Kg   |
|             | 160 Ma | 7,5            | 980            | 73,08          | 15,0                   | 0,79 | 91,3 | 91,3 | 89,5 | 7,0            | 2,0            | 2,1              | 0,0950  | 140  |
|             | 160 La | 11             | 980            | 107,19         | 21,5                   | 0,80 | 92,3 | 92,3 | 90,5 | 7,2            | 2,0            | 2,1              | 0,1200  | 160  |
|             | 180 L  | 15             | 985            | 145,42         | 28,8                   | 0,81 | 92,9 | 92,9 | 91,0 | 7,3            | 2,0            | 2,1              | 0,2200  | 245  |
|             | 200 La | 18,5           | 985            | 179,35         | 35,3                   | 0,81 | 93,4 | 93,4 | 91,5 | 7,3            | 2,0            | 2,1              | 0,3700  | 265  |
|             | 200 Lb | 22             | 985            | 213,28         | 41,8                   | 0,81 | 93,7 | 93,7 | 91,8 | 7,4            | 2,0            | 2,1              | 0,4200  | 285  |
|             | 225 M  | 30             | 990            | 289,37         | 55,4                   | 0,83 | 94,2 | 94,2 | 92,3 | 6,9            | 2,0            | 2,1              | 0,5500  | 335  |
| <sup></sup> | 250 M  | 37             | 990            | 356,89         | 67,3                   | 0,84 | 94,5 | 94,5 | 92,6 | 7,1            | 2,0            | 2,1              | 0,8500  | 471  |
| 400V 50Hz   | 280 S  | 45             | 990            | 434,06         | 80,6                   | 0,85 | 94,8 | 94,8 | 92,9 | 7,3            | 2,0            | 2,0              | 1,4200  | 530  |
| 400         | 280 M  | 55             | 990            | 530,52         | 97,1                   | 0,86 | 95,1 | 95,1 | 93,2 | 7,3            | 2,0            | 2,0              | 1,7000  | 670  |
| ◁           | 315 S  | <b>7</b> 5     | 990            | 723,43         | 135,0                  | 0,84 | 95,4 | 95,4 | 93,5 | 6,6            | 2,0            | 2,0              | 4,2000  | 960  |
|             | 315 M  | 90             | 990            | 868,12         | 160,0                  | 0,85 | 95,6 | 95,6 | 93,7 | 6,7            | 2,0            | 2,0              | 4,9000  | 1070 |
|             | 315 La | 110            | 990            | 1061,03        | 195,0                  | 0,85 | 95,8 | 95,8 | 93,9 | 6,7            | 2,0            | 2,0              | 5,5000  | 1160 |
|             | 315 Lb | 132            | 990            | 1273,24        | 231,0                  | 0,86 | 96,0 | 96,0 | 94,1 | 6,8            | 2,0            | 2,0              | 6,5000  | 1250 |
|             | 355 Ma | 160            | 990            | 1543,32        | 279,0                  | 0,86 | 96,2 | 96,2 | 94,3 | 6,8            | 1,8            | 2,0              | 10,1000 | 1780 |
|             | 355 Mb | 200            | 990            | 1929,15        | 345,0                  | 0,87 | 96,3 | 96,3 | 94,4 | 6,8            | 1,8            | 2,0              | 11,2000 | 1900 |
|             | 355 L  | 250            | 990            | 2411,44        | 430,0                  | 0,87 | 96,5 | 96,5 | 94,6 | 6,8            | 1,8            | 2,0              | 13,0000 | 2100 |



# • 6.5 DATI DIMENSIONALI JM 1E4



SERIE JM Tab. 6.5.1


| M   | otore | a IM   |     | Ingo | ombri | Princi | ipali |     |     |     |     |     | Piedi |    |    |    |    |     |     |     | Flan | gia |     |         |
|-----|-------|--------|-----|------|-------|--------|-------|-----|-----|-----|-----|-----|-------|----|----|----|----|-----|-----|-----|------|-----|-----|---------|
| 101 | otore | - JIVI | AC  | AD   | Н     | HD     | LB    | L   | Α   | В   | C   | AB  | ВВ    | AA | ВА | НА | К  | IM  | М   | NJ6 | Р    | LA  | Т   | S       |
| 80  |       | 2-4    | 158 | 129  | 80    | 209    | 250   | 290 | 125 | 100 | 50  | 157 | 125   | 35 | 31 | 8  | 10 | B5  | 165 | 130 | 200  | 12  | 3,5 | N°4 12  |
| 80  |       | 2-4    | 156 | 123  | 80    | 209    | 250   | 230 | 123 | 100 | 30  | 15/ | 123   | 22 | 31 | 0  | 10 | B14 | 100 | 80  | 120  |     | 3   | N°4 M6  |
| 90  | S     | 2-4-6  | 175 | 140  | 90    | 230    | 275   | 325 | 140 | 100 | 56  | 173 | 125   | 37 | 32 | 10 | 10 | B5  | 165 | 130 | 200  | 12  | 3,5 | N°4 12  |
| 30  | L     | 2-4-0  | 1/3 | 140  | 30    | 230    | 300   | 350 | 140 | 125 | 30  | 1/3 | 150   | וכ | 32 | 10 | 10 | B14 | 115 | 95  | 140  |     | 3   | N°4 M8  |
| 100 |       | 2-4-6  | 198 | 156  | 100   | 256    | 338   | 398 | 160 | 140 | 63  | 196 | 172   | 40 | 39 | 11 | 12 | B5  | 215 | 180 | 250  | 13  | 4   | N°4 15  |
| 100 | _     | 2-4-0  | 136 | 150  | 100   | 236    | 330   | 330 | 160 | 140 | 63  | 156 | 1/2   | 40 | 39 | "  | IZ | B14 | 130 | 110 | 160  |     | 3,5 | N°4 M8  |
| 112 | М     | 2-4-6  | 219 | 166  | 112   | 278    | 387   | 447 | 190 | 140 | 70  | 227 | 180   | 41 | 43 | 12 | 12 | B5  | 215 | 180 | 250  | 14  | 4   | N°4 15  |
| 112 | IVI   | 2-4-6  | 219 | 100  | IIZ   | 2/6    | 367   | 44/ | 190 | 140 | 70  | 221 | 180   | 41 | 43 | IZ | IZ | B14 | 130 | 110 | 160  |     | 3,5 | N°4 M8  |
| 132 | S     | 2-4-6  | 258 | 188  | 132   | 320    | 395   | 475 | 216 | 140 | 89  | 262 | 186   | 51 | 46 | 15 | 12 | B5  | 265 | 230 | 300  | 14  | 4   | N°4 15  |
| 132 | М     | 2-4-0  | 238 | 100  | 132   | 320    | 433   | 513 | 216 | 178 | 69  | 202 | 224   | וכ | 46 | 15 | ıZ | B14 | 165 | 130 | 200  |     | 3,5 | N°4 M10 |
| 160 | М     | 2-4-6  | 315 | 242  | 160   | 402    | 499   | 609 | 254 | 210 | 108 | 304 | 260   | 55 | 50 | 18 | 15 | B5  | 300 | 250 | 350  | 15  | 5   | N°4 19  |
| 160 | L     | 2-4-6  | 315 | 242  | Udi   | 402    | 543   | 653 | 254 | 254 | 108 | 504 | 304   | 22 | 50 | 18 | 15 | B14 | 215 | 180 | 250  |     | 4   | N°4 M12 |

SERIE JM Tab. 6.5.2

|      |       |    |           | Estrei | mità d | 'alber | О     |    |    | Te      | nuta ( | dell'all | oero            |    |       | Scato      | a Morsettie | ra   |       |       |
|------|-------|----|-----------|--------|--------|--------|-------|----|----|---------|--------|----------|-----------------|----|-------|------------|-------------|------|-------|-------|
| Moto | re JM |    | D DB E G/ |        |        |        | nguet | ta | La | to Flar | ngia   |          | o com<br>e lato |    | Mors. | Pressac    | avo         |      |       |       |
|      |       | D  | DB        | E      | GA     | F      | GD    | EB | Øi | Øe      | Н      | Øi       | Øe              | Н  | N°-Ø  | N°-KK      | N°-XX       | VA   | VB    | R     |
| 80   | 2-4   | 19 | М6        | 40     | 21,5   | 6      | 6     | 30 | 20 | 35      | 7      | 20       | 35              | 7  | 6-M4  | 1- M20X1,5 | 1-tappo     | 24,5 | 101   | 101   |
| 90   | 2-4-6 | 24 | M8        | 50     | 27     | 8      | 7     | 40 | 25 | 40      | 7      | 25       | 40              | 7  | 6-M4  | 1- M25X1,5 | 1-tappo     | 40,5 | 109   | 109   |
| 100  | 2-4-6 | 28 | M10       | 60     | 31     | 8      | 7     | 50 | 30 | 47      | 7      | 30       | 47              | 7  | 6-M4  | 1- M25X1,5 | 1-tappo     | 34   | 109   | 109   |
| 112  | 2-4-6 | 28 | M10       | 60     | 31     | 8      | 7     | 50 | 30 | 47      | 7      | 30       | 47              | 7  | 6-M5  | 2-M25X1,5  |             | 33,2 | 117,5 | 117,5 |
| 132  | 2-4-6 | 38 | M12       | 80     | 41     | 10     | 8     | 65 | 40 | 62      | 7      | 40       | 62              | 7  | 6-M5  | 2-M32X1,5  |             | 41,2 | 117,5 | 117,5 |
| 160  | 2-4-6 |    |           |        |        | 12     | 8     | 90 | 45 | 62      | 12     | 45       | 62              | 12 | 6-M6  | 2-M40x1,5  | 1-M16x1,5   | 75   | 167   | 167   |



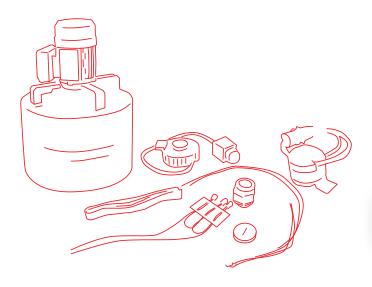
# • 6.6 DATI DIMENSIONALI GM IE4



SERIE GM Tab. 6.6.1

| Mc   | otore | CM       |     | Ing | gombi | ri Princ | ipali |      |     |     |     |     | Piedi |     |     |    |    |     |     |     | Flang | ia |   |         |
|------|-------|----------|-----|-----|-------|----------|-------|------|-----|-----|-----|-----|-------|-----|-----|----|----|-----|-----|-----|-------|----|---|---------|
| IVIC | )tore | GIVI     | AC  | AD  | Н     | HD       | LB    | L    | Α   | В   | C   | AB  | BB    | AA  | СВ  | НА | K  | IM  | М   | NJ6 | Р     | LA | Т | S       |
| 160  | М     | 2-4-6    | 335 | 256 | 160   | 416      | 523   | 633  | 254 | 210 | 108 | 320 | 260   | 65  | 26  | 20 | 15 | B5  | 300 | 250 | 350   | 15 | 5 | N°4 19  |
|      | L     |          |     | 250 |       |          | 593   | 703  |     | 254 |     | 520 | 304   |     |     |    |    | B14 | 215 | 180 | 250   |    | 4 | N°4 M12 |
| 180  | М     | 2-4      | 363 | 271 | 180   | 451      | 616   | 726  | 279 | 241 | 121 | 350 | 311   | 70  | 35  | 22 | 15 | B5  | 300 | 250 | 350   | 15 | 5 | N°4 19  |
|      | L     | 4-6      |     |     |       |          | 651   | 761  |     | 279 |     |     | 349   |     |     |    |    |     |     |     |       |    |   |         |
| 200  | L     | 2-4-6    | 418 | 312 | 200   | 512      | 752   | 862  | 318 | 305 | 133 | 390 | 370   | 70  | 32  | 25 | 18 | B5  | 350 | 300 | 400   | 17 | 5 | N°4 19  |
| 225  | S     | 4        | 465 | 334 | 225   | 559      | 740   | 880  | 356 | 286 | 149 | 432 | 370   | 75  | 46  | 28 | 19 | B5  | 400 | 350 | 450   | 20 | 5 | N° 8 19 |
| 225  | м     | 2        | 465 | 334 | 225   | 559      | 775   | 885  | 356 | 311 | 149 | 433 | 395   | 75  | 46  | 28 | 19 | B5  | 400 | 350 | 450   | 20 | 5 | N° 8 19 |
|      |       | 4-6      | 705 | 354 | 223   | 333      | 775   | 915  | 330 | 311 | 173 | 755 | 333   | /5  | 70  | 20 | 15 |     | 400 | 330 | 750   | 20 |   | 11 0 15 |
| 250  | М     | 2-4-6    | 525 | 379 | 250   | 629      | 840   | 980  | 406 | 349 | 168 | 486 | 445   | 80  | 55  | 30 | 24 | B5  | 500 | 450 | 550   | 22 | 5 | N° 8 19 |
| 280  | s     | 2        | 588 | 412 | 280   | 692      | 840   | 980  | 457 | 368 | 190 | 545 | 485   | 85  | 69  | 35 | 24 | B5  | 500 | 450 | 550   | 22 | 5 | N° 8 19 |
| 280  | 3     | 4-6      | 500 | 412 | 280   | 692      | 840   | 980  | 45/ | 300 | 190 | 545 | 465   | 85  | 69  | 35 | 24 | БЭ  | 500 | 450 | 550   | ZZ | Э | N 8 19  |
| 280  | М     | 2<br>4-6 | 588 | 412 | 280   | 692      | 880   | 1020 | 457 | 419 | 190 | 545 | 536   | 85  | 69  | 35 | 24 | B5  | 500 | 450 | 550   | 22 | 5 | N° 8 19 |
| 315  | s     | 2        | 620 | 530 | 315   | 845      | 1060  | 1200 | 508 | 406 | 216 | 630 | 570   | 120 | 84  | 45 | 28 | В5  | 600 | 550 | 660   | 22 | 6 | N° 8 24 |
|      |       | 4-6      |     |     |       |          | 4470  | 1230 |     |     |     |     |       |     |     |    |    |     |     |     |       |    |   |         |
| 315  | М     | 2        | 620 | 530 | 315   | 845      | 1170  | 1310 | 508 | 457 | 216 | 630 | 680   | 120 | 84  | 45 | 28 | B5  | 600 | 550 | 660   | 22 | 6 | N° 8 24 |
|      |       | 4-6      |     |     |       |          | 1164  | 1340 |     |     |     |     |       |     |     |    |    |     |     |     |       |    |   |         |
| 315  | L     | 2        | 620 | 530 | 315   | 845      | 1170  | 1310 | 508 | 508 | 216 | 630 | 680   | 120 | 84  | 45 | 28 | B5  | 600 | 550 | 660   | 22 | 6 | N° 8 24 |
| 3.5  | -     | 4-6      | 020 | 330 | 515   | 0-13     | 1164  | 1340 | 300 | 300 | 210 | 050 | 000   | 120 | 0-1 | 75 | 20 | 55  | 000 | 330 | 000   |    |   | 11 0 2- |
|      |       | 2        |     |     |       |          |       | 1500 |     |     |     |     |       |     |     |    |    |     |     |     |       |    |   |         |
| 355  | М     | 4-6      | 698 | 645 | 355   | 1000     | 1360  | 1570 | 610 | 560 | 254 | 730 | 750   | 120 | 68  | 52 | 28 | B5  | 740 | 680 | 800   | 25 | 6 | N° 8 24 |
|      |       | 2        |     |     |       |          |       | 1500 |     |     |     |     |       |     |     |    |    |     |     |     |       |    |   |         |
| 355  | L     | 4-6      | 698 | 645 | 355   | 1000     | 1360  | 1570 | 610 | 630 | 254 | 730 | 750   | 120 | 68  | 52 | 28 | B5  | 740 | 680 | 800   | 25 | 6 | N° 8 24 |
|      |       | 4-0      |     |     |       |          |       | 15/0 |     |     |     |     |       |     |     |    |    |     |     |     |       |    |   |         |




SERIE GM Tab. 6.6.2

|     |        |            |     |       | Estre | nità d' | alber | )     |     |     | Te      | nuta d | ell'alb | ero             |       |            | Scato       | la Morsettie | ra  |     |     |
|-----|--------|------------|-----|-------|-------|---------|-------|-------|-----|-----|---------|--------|---------|-----------------|-------|------------|-------------|--------------|-----|-----|-----|
| Мс  | otore  | • GM       |     |       |       |         | Liı   | nguet | ta  | La  | to Flar | ngia   |         | o com<br>e lato |       | Mors.      | Pres        | sacavo       |     |     |     |
|     |        |            | D   | DB    | Ε     | GA      | F     | GD    | ЕВ  | Øi  | Øe      | Н      | Øi      | Øe              | н     | N°-Ø       | N°-KK       | N°-XX        | VA  | VB  | R   |
| 160 | M<br>L | 2-4-6      | 42  | M16   | 110   | 45      | 12    | 8     | 90  | 45  | 62      | 8/12   | 45      | 62              | 8/12  | 6-M6       | 2-M40x1,5   | 1-M16x1,5    | 67  | 152 | 185 |
| 180 | M<br>L | 2-4<br>4-6 | 48  | M16   | 110   | 51,5    | 14    | 9     | 100 | 55  | 75      | 8/12   | 55      | 75              | 8/12  | 6-M6       | 2-M40x1,5   | 1-M16x1,5    | 82  | 152 | 185 |
| 200 | L      | 2-4-6      | 55  | M20   | 110   | 59      | 16    | 10    | 100 | 60  | 80      | 8/12   | 60      | 80              | 8/12  | 6-M8       | 2-M50x1,5   | 1-M16x1,5    | 92  | 190 | 224 |
| 225 | S      | 4          | 60  | M20   | 140   | 64      | 18    | 11    | 125 | 65  | 90      | 10/12  | 65      | 90              | 10/12 | 6-M8       | 2-M50x1,5   | 1-M16x1,5    | 95  | 190 | 224 |
| 225 | м      | 2          | 55  | M20   | 110   | 59      | 16    | 10    | 100 | 60  | 80      | 8/12   | 60      | 80              | 8/12  | 6-M8       | 2-M50x1,5   | 1 M1C 1 F    | 95  | 190 | 224 |
| 225 | IVI    | 4-6        | 60  | MZU   | 140   | 64      | 18    | 11    | 125 | 65  | 90      | 10/12  | 65      | 90              | 10/12 | 6-1418     | 2-M5UX1,5   | 1-M16x1,5    | 95  | 190 | 224 |
| 250 | М      | 2          | 60  | 1420  | 140   | 64      | 40    | 44    | 425 | 65  | 90      | 10/12  | 65      | 90              | 10/12 | 6 140      | 2 1462 45   | 4 146 45     | 00  | 220 | 202 |
| 250 |        | 4-6        | 65  | M20   |       | 69      | 18    | 11    | 125 | 70  | 90      | 10/12  | 70      | 90              | 10/12 | 6-M10      | 2-M63x1,5   | 1-M16x1,5    | 88  | 220 | 283 |
| 200 | _      | 2          | 65  | 1420  | 4/0   | 69      | 18    | 11    | 425 | 70  | 90      | 10/12  | 70      | 90              | 10/12 | 6 1410     | 2 1462 45   | 4 1446 4 5   | 0.0 | 220 | 202 |
| 280 | S      | 4-6        | 75  | M20   | 140   | 79,5    | 20    | 12    | 125 | 85  | 110     | 10/12  | 85      | 100             | 10/12 | 6-M10      | 2-M63x1,5   | 1-M16x1,5    | 96  | 220 | 283 |
| 280 | м      | 2          | 65  | M20   | 140   | 69      | 18    | 11    | 125 | 70  | 90      | 10/12  | 70      | 90              | 10/12 | 6-M10      | 2-M63x1.5   | 1-M16x1.5    | 96  | 220 | 283 |
| 200 | 101    | 4-6        | 75  | 14120 | 140   | 79,5    | 20    | 12    | 123 | 85  | 110     | 10/12  | 85      | 100             | 10/12 | 0-14110    | 2-14103/1,3 | 1-10110X1,5  | 50  | 220 | 203 |
| 315 | s      | 2          | 65  | M20   | 140   | 69      | 18    | 11    | 125 | 85  | 110     | 10/12  | 85      | 110             | 10/12 | 6-M12/16   | 2-M63x1,5   | 1-M16x1,5    | 117 | 280 | 320 |
| 3.3 |        | 4-6        | 80  | 14120 | 170   | 85      | 22    | 14    | 140 | 95  | 120     | 10/12  | 95      | 120             | 10/12 | 0 1112/10  | 2 11105/1,5 | 1 1011021,5  | ''' | 200 | 320 |
| 315 | М      | 2          | 65  | M20   | 140   | 69      | 18    | 11    | 125 | 85  | 110     | 10/12  | 85      | 110             | 10/12 | 6-M12/16   | 2-M63x1,5   | 1-M16x1.5    | 117 | 280 | 320 |
| 313 | IVI    | 4-6        | 80  | IVIZU | 170   | 85      | 22    | 14    | 140 | 95  | 120     | 10/12  | 95      | 120             | 10/12 | 0-14112/10 | Z-1V105X1,5 | 1-14110X1,5  | 117 | 200 | 320 |
| 315 | L      | 2          | 65  | M20   | 140   | 69      | 18    | 11    | 125 | 85  | 110     | 10/12  | 85      | 110             | 10/12 | 6-M12/16   | 2 MC2/4 F   | 1 M1C 1 F    | 117 | 280 | 320 |
| 313 |        | 4-6        | 80  | IVIZU | 170   | 85      | 22    | 14    | 140 | 95  | 120     | 10/12  | 95      | 120             | 10/12 | 0-14112/16 | 2-M63x1,5   | 1-M16x1,5    | 11/ | 260 | 320 |
| 355 | M      | 2          | 75  | M20   | 140   | 79,5    | 20    | 12    | 125 | 95  | 120     | 10/12  | 95      | 120             | 10/12 | 6-M20      | 2 Mean c    | 1 M16 v1 F   | 117 | 330 | 380 |
| 333 | М      | 4-6        | 100 | M24   | 210   | 106     | 28    | 16    | 180 | 110 | 140     | 10/12  | 110     | 140             | 10/12 | 0-IVIZU    | 2-M63x1,5   | 1-M16x1,5    | 117 | 330 | 380 |
| 255 |        | 2          | 75  | M20   | 140   | 79,5    | 20    | 12    | 125 | 95  | 120     | 10/12  | 95      | 120             | 10/12 | C M20      | 2 MC2-45    | 1 1410.45    | 117 | 220 | 300 |
| 355 | L      | 4-6        | 100 | M24   | 210   | 106     | 28    | 16    | 180 | 110 | 140     | 10/12  | 110     | 140             | 10/12 | 6-M20      | 2-M63x1,5   | 1-M16x1,5    | 117 | 330 | 380 |

# ESECUZIONI FUORI STANDARD



# ■ 10 ESECUZIONI SPECIALI



#### 1) AVVOLGIMENTO

#### Tensioni e/o frequenze non standard

I motori elettrici Seipee con tensione di alimentazione trifase, sono progettati per essere utilizzati sulla rete Europea 230/400V ± 10% 50Hz.

Significa che lo stesso motore può essere collegato con le seguenti reti elettriche:

- ▶ 220/380V ±5%
- > 230/400V ±10%
- ▶ 240/415V ±5%

E' possibile realizzare su richiesta avvolgimenti speciali per tensioni e/o frequenze differenti.

#### Tropicalizzazione

La tropicalizzazione dell'avvolgimento consiste in una verniciatura a freddo di un prodotto di notevoli qualità igroscopiche che assicura una certa refrattarietà dalla penetrazione della condensa nei materiali che devono mantenere un'ottimale tenuta isolante.

E' indicata in situazioni in cui il motore sia installato in ambienti il cui tasso di umidità risulti essere particolarmente significativo.

#### Impregnazione supplementare avvolgimento

Consiste in un secondo ciclo di impregnazione, è raccomandato per:

- ▶ ambienti umidi e corrosivi (muffe);
- ▶ ambienti con forti sollecitazioni meccaniche ed elettromagnetiche indotte da inverter;
- ▶ in presenza di forti agenti elettrici (picchi di tensione);
- in presenza di forti agenti meccanici (vibrazioni meccaniche o elettromagnetiche indotte);

#### 2) SCATOLA MORSETTIERA

#### Scatola morsettiera laterale

Di serie la scatola morsettiera si trova in posizione T, ovvero in alto lato comando.

Per motori provvisti di piedi IM B3 e forme costruttive derivate è possibile a richiesta posizionare la scatola morsettiera R (a destra) o L (a sinistra).

Nei motori autofrenanti l'eventuale leva di sblocco segue la posizione della scatola morsettiera.

#### Scatola morsettiera NDE

A richiesta la scatola morsettiera può essere posizionata lato NDE (lato ventola) invece del lato DE (lato comando) come di serie.



#### Ingresso cavi

Di serie i pressacavi sono posizionati sul lato destro della scatola morsettiera. La posizione dell'ingresso cavi può essere ruotata di 90° o di 180° su richiesta.

#### Tipologia pressacavi

I pressacavi standard sono realizzati in poliammide, e le relative dimensioni per ogni taglia motore sono riportate nelle tabelle dei dati dimensionali delle varie serie di motori.

A richiesta possono essere forniti pressacavi e tappi in metallo, indicati soprattutto per applicazioni con temperature al di fuori del range -15/+40°C.

#### Connettore cilindrico per cablaggio rapido motore

#### Condensatore ausiliario (serie JMM)

Condensatore ausiliario con disgiuntore elettronico incorporato per elevato momento di spunto (MS/MN=circa1.1÷1.4). Si inserisce automaticamente all'avviamento del motore solo per un tempo di 1.5 s (non idoneo per applicazioni con tempi di avviamento > 1.5 s).

**Attenzione:** il tempo tra un avviamento e il successivo deve essere > di 6 s, per non recare danni al disgiuntore.

#### 3) PROTEZIONE MOTORE

#### Sonde termiche bimetalliche (PTO)

Tre sonde collegate in serie con contatto normalmente chiuso inserite nell'avvolgimento del motore. Si ha l'apertura del contatto quando la temperatura dell'avvolgimento raggiunge e supera il valore di intervento (150°C per motore in classe F). VN,max. 250 [V], IN,max. 1.6 [A]

I terminali sono posti all'interno della scatola morsettiera motore.

Di serie su motori da altezza d'asse 160 a 450.

#### Sonde termiche a termistori (PTC)

Tre termistori collegati in serie inseriti nell'avvolgimento conformi alle norme DIN 44081/44082, da collegare ad una apposita apparecchiatura di sgancio (l'acquisto di tale apparecchiatura è a carico dell'acquirente del motore).

Si ha una repentina variazione di resistenza (che provoca lo sgancio) quando la temperatura dell'avvolgimento raggiunge e supera il valore di intervento (150°C per motore in classe F). I terminali sono posti all'interno della scatola morsettiera motore.

Di serie su tutti i motori di potenza superiore e uguale a 0.75kW.

#### Sensore di temperatura PT 100 (termometro a resistenza)

È un sensore di temperatura che sfrutta la variazione della resistività di alcuni materiali al variare della temperatura, in conformità alla norma DIN-IEC 751.

Vengono inseriti tre PT 100 all'interno dell'avvolgimento, uno per ogni fase. Terminali posti all'interno della scatola morsettiera motore vanno collegati ad un'apposita apparecchiatura (l'acquisto di tale apparecchiatura è a carico dell'acquirente del motore).

#### Sensore di temperatura KTY84-130

Sensore di temperatura in silicio dipendente dalla variazione di resistenza con coefficiente di temperatura positivo.

#### Scaldiglia anticondensa

Si consiglia per motori funzionanti in ambienti:

- con elevata umidità;
- con forte escursione termica;
- con bassa temperatura (possibile formazione di ghiaccio);

Si tratta di una resistenza fissata su teste di bobine che consente di riscaldare l'avvolgimento del motore elettrico fermo e quindi eliminare la condensa all'interno della carcassa.

Struttura: Nastro in tessuto di vetro, in cui è inserita una resistenza multifilare in nickel-cromo, ricoperta da nastro adesivo in poliestere rinforzato con filamenti in fibra di vetro e da un'ulteriore calza esterna in fibra di vetro.

Alimentazione monofase 230 V c.a. ±10% 50 / 60 Hz, potenza assorbita :

- 25 W per grandezza 63 ... 90;
- 26 W per grandezza 100 ... 112;
- 40 W per grandezza 132 ... 160;
- 26 W per grandezza 180 ... 200;
- 42 W per grandezza 225 ... 250;
- 65 W per grandezza 280;
- 99 W per grandezza 315 ... 450;

La scaldiglia non deve essere alimentata durante il funzionamento del motore.

Terminali posti all'interno della scatola morsettiera motore.

La scaldiglia anticondensa è obbligatoria in concomitanza all' esecuzione fori scarico condensa.

Di serie su motori GM 160...450 sul lato opposto alla scatola morsettiera.

All'ordine è necessario specificare sempre la posizione di lavoro del motore.

Se, all'installazione, i tappi sui fori dello scarico condensa situati sul lato inferiore del motore elettrico non sono stati tolti, devono essere aperti ogni 5 mesi circa per permettere la fuoriuscita della condensa creatasi.

## 4) COLORI E VERNICIATURA

I motori Seipee sono verniciati a polvere o con smalto nitro combinato idoneo a resistere ai normali ambienti industriali e a consentire ulteriori finiture con vernici sintetiche monocompo-

- ▶ JMM 56...100: RAL 9006 (grigio PERLA);
- ▶ JM 56...160: RAL 9006 (grigio PERLA);
- ▶ GM 160...450: RAL 5010 (blu);
- ▶ JMD 80...160: RAL 9006 (grigio PERLA);
- ▶ GMD 180...250: RAL 5010 (blu);
- ▶ JMK 63....160 RAL 9006 (grigio PERLA); Copriventola RAL 9005 (Nero)
- ► GMK 180...280 RAL 5010 (blu);

La scelta del trattamento di verniciatura rappresenta una fase critica in quanto da essa dipende la durabilità del motore elettrico in funzione dell'ambiente in cui si andrà a collocare. Secondo la norma UNI EN ISO 12944-1 la durabilità della verniciatura è classificabile secondo 3 classi:

**Bassa (L)** da 2 a 5 anni.

Media (M) da 5 a 10 anni.

**Alta (H)** oltre 15 anni.



La durabilità viene indicata a fianco della categoria di corrosività dell'ambiente di installazione per consentire la definizione del ciclo di protezione in grado di operare in quell'ambiente e di garantire la durabilità richiesta. I cicli di verniciatura che si effettuano sono pienamente conformi alle normative. ISO 12944 Classification:

**C1 - C2** = Zone rurali, basso inquinamento. Edifici riscaldati/ atmosfera neutra.

**C3** = Atmosfera urbana e industriale. Moderati livelli di anidride solforosa. Aree di produzione con alta umidità.

**C4** = Industriale e costiera. Impianti di lavorazione chimica.

**C5L** = Aree industriali con alta umidità e atmosfere aggressive.

**C5M** = Aree marine, offshore, estuari, aree costiere con alta salinità.

A richiesta sono possibili le seguenti opzioni:

- ▶ Senza verniciatura: motore fornito con solo primer di fondo
- Verniciatura in altre tonalità: RAL da indicare sull'ordine di acquisto
- Verniciatura speciale C3
- ▶ Verniciatura speciale resistente ad ambienti più gravosi C4 o C5.

#### 5) ESECUZIONI SUI CUSCINETTI

#### PT 100 sul cuscinetto

Sensore PT100 inserito nel supporto cuscinetto (lato comando e/o lato opposto comando). I terminali vengono posti all'interno di una scatola di derivazione solidale alla carcassa del motore.

#### Cuscinetto isolato elettricamente

I cuscinetti volventi dei motori elettrici sono potenzialmente soggetti ai passaggi di corrente, che ne danneggiano rapidamente le superfici delle piste e dei corpi volventi e ne degradano il grasso.

Il rischio di danneggiamento aumenta nei sempre più diffusi motori elettrici dotati di convertitori di frequenza, soprattutto in applicazioni con repentine variazioni di frequenza.

Nei cuscinetti di tali motori, c'è un ulteriore rischio dovuto alla presenza delle correnti di alta frequenza causate dalle capacità parassite esistenti all'interno del motore. Il cuscinetto isolato elettricamente ha la superficie esterna dell'anello esterno rivestita con uno strato di ossido di alluminio spesso 100 m, in grado di resistere a tensioni di 1.000 V c.c.; elimina praticamente gli inconvenienti dovuti ai passaggi di corrente.

Di prassi viene installato sul cuscinetto NDE.

Da utilizzare nei motori dotati di convertitori di frequenza: consigliato a partire dalla grandezza 250.

- Cuscinetto ZZ C3
- Cuscinetto bloccato di serie su motori GM, a richiesta su serie JM

#### Cuscinetto a contatto obliquo

Per applicazioni con importanti carichi assiali che agiscono in una sola direzione (da grandezza 315 e superiori)

#### • Cuscinetto a rulli cilindrici

Per applicazioni con forti carichi radiali costanti (da grandezza 160 a 280).

#### • Ingrassatore automatico a singolo punto per cuscinetti

I lubrificatori automatici possono essere installati per garantire che la quantità corretta di lubrificante venga erogata in un determinato periodo di tempo utilizzando una cella a gas inerte.

Questa procedura di lubrificazione consente un controllo più accurato della quantità di lubrificante fornito, rispetto alle tradizionali tecniche di rilubrificazione manuale. Ha un periodo di erogazione nominale che può variare tra 1 mese e 12 mesi e può anche essere temporaneamente disattivato, se necessario. È adatto per il montaggio diretto in ambienti con spazi limitati ed è particolarmente adatto per punti che richiedono lubrificazione frequente, arresto della macchina e implicazioni per la sicurezza. (possibile solo per motori con cuscinetti rilubrificabili, serie GM grandezza 160 e superiori)

# 6) ESECUZIONI MECCANICHE E GRADI DI PROTEZIONE

- Doppia uscita d'albero (su cui non sono ammessi carichi radiali)
- Estremità d'albero a disegno
- ▶ Albero standard in acciaio INOX
- ▶ Viteria esterna in acciaio INOX
- Equilibratura a chiavetta intera
- Eguilibratura senza chiavetta
- ▶ Tolleranza flangia in classe precisa
- Copriventola per ambiente tessile

Copriventola dotato di uno speciale tettuccio di protezione al posto della normale griglia per evitare l'intasamento della stessa con i cascami e il pulviscolo dei filati dell'ambiente tessile. L'ingombro longitudinale del motore aumenta di 30÷70mm secondo la grandezza

#### Protezione IP56 serie JM e GM

Consigliata per motori funzionanti in ambienti molto umidi e/o in presenza di spruzzi d'acqua. Il grado di protezione in targa diventa IP56.

Per motori posizionati ad asse verticale è preferibile contattare prima l'ufficio tecnico.

#### Protezione IP65 serie JM e GM

Consigliata per motori funzionanti in ambienti polverosi. Il grado di protezione in targa diventa IP65.

Per motori posizionati ad asse verticale è preferibile contattare prima l'ufficio tecnico.

#### Fori scarico condensa

Di serie su motori GM 160...450 sul lato opposto alla scatola morsettiera.

All'ordine è necessario specificare sempre la posizione di lavoro del motore.

Se, all'installazione, i tappi sui fori dello scarico condensa situati sul lato inferiore del motore elettrico non sono stati tolti, devono essere aperti ogni 5 mesi circa per permettere la fuoriuscita della condensa creatasi.

#### Tettuccio parapioggia

Esecuzione necessaria per applicazioni all'esterno o in presenza di spruzzi d'acqua, con albero verticale rivolto in basso, forma costruttiva (IM V5, IM V1, IM V18, IM V15, IM V17).



La quota LB aumenta di:

- 35 mm grandezza 56 ... 112;
- 45 mm grandezza 132 ... 160;
- 65 mm grandezza 180 ... 225;
- 85 mm grandezza 250 ... 355;
- 120 mm grandezza 355X ... 450

#### Esecuzione per basse temperature

I motori standard possono funzionare a temperatura ambiente fino a -15°C con punte fino a -20°C.

Per temperatura ambiente fino a -30°C e oltre, sono necessari i cuscinetti speciali e la scaldiglia anticondensa. A richiesta sono consigliati la ventola di lega leggera e i pressacavi/tappi in metallo ed in caso di formazione di condensa i relativi fori di scarico condensa (in questo caso indicare la posizione di montaggio).

#### Esecuzione per alte temperature

I motori trifase in esecuzione standard possono funzionare a temperatura ambiente fino a 55°C con punte anche fino a 60°C, purchè la potenza richiesta sia inferiore a quella di targa (come da Caratteristiche generali / Potenza resa in funzione della temperatura ambiente Tab 3.17 a pag. 32).

Per temperatura ambiente 60 ÷ 90°C sono necessari cuscinetti speciali e anelli di tenuta in gomma fluorata (viton). Sono anche consigliati avvolgimento in classe d'isolamento H, ventola di lega leggera e pressacavi/tappi in metallo.

#### 7) VENTILAZIONE

#### IC418

Motore senza ventola e copriventola. Si utilizza in applicazioni in cui il raffreddamento è assicurato dall'ambiente esterno.

#### IC416

Servoventilatore assiale IP54 indicato per:

- avviamenti frequenti e/o cicli di avviamento gravosi
- ▶ con uso di variatore di frequenza o di tensione poichè, in caso di funzionamento prolungato a bassa velocità, la ventilazione perde la sua efficacia, ed è pertanto consigliabile installare un sistema di ventilazione forzata a flusso costante. Viceversa, in caso di funzionamento prolungato ad alte velocità, il rumore emesso dal sistema di ventilazione può risultare fastidioso, e si consiglia quindi di optare per un sistema di ventilazione forzata.

Le caratteristiche del servoventilatore e la variazione  $\Delta L$  della quota LB (vedere "dimensioni motori") sono riportate a pag 30 tab. 3.14.

I terminali di alimentazione della ventilazione ausiliaria si trovano all'interno di una scatola morsettiera ausiliaria solidale al copriventola. Prima di effettuare l'allacciamento elettrico assicurarsi che l'alimentazione corrisponda ai dati elettrici riportati in targhetta.

#### Importante:

verificare che il senso di rotazione del ventilatore trifase corrisponda a quello indicato dalla freccia posta sul copriventola, in caso contrario invertire due delle tre fasi di alimentazione

A richiesta il servoventilatore è realizzabile in versioni speciali: tensioni, frequenze, temperature d'esercizio su specifiche del cliente oltre a versione monofase, trifase, multitenzione e protezione IP66.

#### 8) TRASDUTTORI DI VELOCITA'

**Encoder incrementale** standard ad albero cavo a fissaggio elastico cavetto di collegamento munito di connettore maschio di tipo militare fissato al motore.

Viene fornito anche il connettore femmina con relativo schema per il collegamento

Caratteristiche:

- tipo ottico incrementale
- ▶ bidirezionale con canale di zero (canali A,B,Z e rispettivi negati)
- grado di protezione IP 54
- velocità max 6000 RPM (4000 RPM in servizio continuo S1)
- ▶ temperatura di funzionamento -10°C ÷ +85°C
- risoluzione da 200 a 2048 imp./giro; 1024 standard
- corrente di carico max 20 mA per canale
- tensione di alimentazione 5 ÷ 28 V c.c.
- configurazione elettronica line driver / push-pull (nella configurazione push-pull non si devono collegare i canali A,B,Z negati)
- assorbimento a vuoto 100 mA.

Esecuzioni disponibili:

- motore servoventilato con encoder
- motore autoventilato con encoder

La quota LB nelle due esecuzioni subisce la stessa variazione  $\Delta L$  riportata in tabella (Caratteristiche del ventilatore ausiliario pag. 32 n° tabella 3.14).

#### A richiesta sono fornibili anche

- ▶ Encoder incrementali con grado di protezione superiore
- ▶ Encoder assoluti
- ▶ Resolver

#### Solo per la Serie JMK e GMK:

#### Protezione freno in gomma

Serve ad evitare che polvere e/o acqua o altri corpi estranei penetrino all'interno delle superfici di frenata. Inoltre, limita in modo consistente che la polvere di usura del freno si disperda nell'ambiente. Viene applicata intorno al freno nelle apposite scanalature predisposte. Questa esecuzione è necessaria per IP55

# ▶ Protezione IP55 (non possibile in esecuzione con leva di sblocco)

Serie freno TA e GA: anello di tenuta sul lato comando per IM B5 (V-ring per IM B3), protezione in gomma antipolvere e antiacqua e anello V-ring sul lato opposto.

- ▶ Freno TC o L7 con protezione IP66 (non possibile in esecuzione con leva di sblocco).
- Disco freno con materiale di attrito anti-incollaggio (serie TA, GA, TC, GC)

Elimina il pericolo di incollaggio del disco freno. Si consiglia per motori funzionanti in ambienti:

- aggressivi
- con alta concentrazione di vapore
- vicini al mare (in presenza di salsedine)

Inoltre, si consiglia quando il motore rimane inutilizzato per



lunghi periodi. (Attenzione: il momento frenante nominale diminuisce del 10%)

#### Leva di sblocco manuale

Serve a liberare il motore dal freno non alimentato e ritorna nella sua posizione iniziale dopo la manovra (ritorno automatico). Utile per effettuare rotazioni manuali in caso di mancanza di alimentazione e/o durante l'installazione. L'impugnatura della leva è asportabile e si trova in corrispondenza della scatola morsettiera (posizione standard). Si consiglia sempre di asportare l'impugnatura una volta terminate le operazioni.

#### Rotazione manuale

Permette di ruotare l'albero motore dal lato opposto comando. Si utilizza una chiave maschio esagonale inserendola nel foro centrale del copriventola.

- misura di 3 per grandezza 63;
- misura di 4 per 71;
- misura di 5 per 80;
- misura di 6 per 90 ... 132;
- misura di 8 per 160;

NON possibile con le esecuzioni Tettuccio parapioggia, Encoder e Servoventilatore assiale.

- Momento frenante tarato diversamente dal valore standard.
- Microinterruttore meccanico per segnalare l'usura oppure la posizione Bloccato/Sbloccato del freno. Terminali collegati a morsettiera fissa in scatola morsetti-
- Microinterruttore per segnalare apertura / chiusura freno.

#### 9) ESECUZIONI SECONDO NORME **SPECIFICHE**

#### Esecuzione secondo norme

**US** per mercato Statunitense e Canadese, disponibile sulle serie JM e GM. Certificato N. E34813 Le varianti principali sono il sistema di isolamento dell'avvolgimento in classe F omologato UL, adeguamento delle distanze in aria verso massa e tra parti in tensione.

#### Esecuzione secondo norme

per l'unione doganale euroasiatica (Russia, Bielorussia, Kazakistan, Armenia e Kirghizistan) certificato RU D-IT.AD53. B07480



per Repubblica popolare cinese



per Regno Unito



per applicazioni in ambiente navale e marino



I motori della serie JM e GM (≤600V), sono fornibili per l'utilizzo in ambienti con atmosfere potenzialmente esplosive secondo la direttiva ATEX 94/9/CE gruppo II categoria 3D per zona 22 / 3G zona 2.

Di serie vengono installate PTC 130°C e pressacavi certificati ATEX.

Marcatura in targa:



ATEX II 3D Ex tc IIIC T125°C Dc IP65 zona 22



**ξ**x ATEX II 3G Ex ec IIC T3 Gc zona 2

A richiesta è possibile anche l'esecuzione  $\langle Ex \rangle$  ATEX II 3G Ex ec IIC T4 Gc.

Legenda:

II = Gruppo di appartenenza (uso in superficie);

**3** = Categoria di protezione;

comprende apparecchi progettati per funzionare conformemente ai parametri operativi stabiliti dal Fabbricante e garantire un livello di protezione normale; possono essere impiegati solo in zone classificate 2 oppure 22 polveri non conduttive.

**D** = Polveri per zona di installazione Dc (zona 22);

**G** = Gas per zona di installazione Gc (zona 2);

tc / ec = modo di protezione;

**IIIC / IIC =** gruppo di apparecchiatura appartenente in base alla natura dell'atmosfera esplosiva;

T135°C = massima temperatura superficiale per atmosfere con presenza di polveri;

T3 / T4 = classe di temperatura per atmosfere con presenza di gas.

Per applicazioni con inverter occorre sempre collegare le sonde di temperatura in dotazione per rispettare le classi termiche indicate nella marcatura.

L'acquirente del prodotto avrà la responsabilità di adottare opportune misure tecniche ed organizzative e di valutare ogni possibile rischio d'esplosione per la salute e sicurezza dei lavoratori in aree potenzialmente esplosive (Direttiva 99/92/ CE).

Al ricevimento del motore elettrico accertarsi che non presenti danni o anomalie.

Prima di mettere in funzione il motore controllare i dati riportati in targa, leggere attentamente il manuale di istruzioni (in dotazione al motore) e verificare la sua idoneità alla applicazione richiesta.

#### **10) DATI TECNICI E TARGHETTE AGGIUNTIVE**

- Doppia targa
- ▶ Targa in acciaio inox
- Indicazioni aggiuntive sulla targhetta e sull'etichetta dell'im-
- Certificato di collaudo
- Documento con dati elettrici
- Documento con disegno quotato