

MOTEURS ÉLECTRIQUES CATALOGUE GÉNÉRAL

NEW ENERGY FOR YOUR BUSINESS

MOTEURS ÉLECTRIQUES

DEPUIS 1972 MOTEURS ÉLECTRIQUE POUR **APPLICATIONS INDUSTRIELLES**

ABOUT

Les produits Seipee sont conformes aux directives sur les produits, comme l'exigent tous les pays de l'UE, afin de garantir un standard approprié de sécurité. Une déclaration de conformité à la « Directive basse tension » 2006/95/CE est émise pour chaque produit.

UNI EN ISO 9001:2015

Seipee a choisi le système qualité **ISO 9001** comme norme de référence pour toutes ses activités. Cette volonté se manifeste par l'engagement à l'amélioration continue de la qualité et de la fiabilité des produits ;

les activités commerciales, la conception, l'achat de matériaux, la production et le service après-vente sont les moyens qui permettent à Seipee d'atteindre cet objectif.

CONFINDUSTRIA

MEMBRE ANIE ET CONFINDUSTRIA

Seipee est associé à ANIE (Fédération nationale des entreprises électrotechniques et électroniques), une division du secteur électrotechnique et électronique de Confindustria qui est

considérée comme une référence pour tous les aspects techniques dans son secteur et la réglementation en vigueur.

L'association Energia, née de la fusion des Branches Production, Transport et Distribution a obtenu au fil du temps le poids nécessaire pour devenir l'interlocuteur auprès des institutions nationales et internationales dans le but de promouvoir une plus grande rationalité et efficacité du système au profit de l'utilisateur.

La compétence dans le traitement de tout sujet lié au secteur de l'énergie constitue le plus de l'association qui en fait le centre des intérêts professionnels, industriels et commerciaux des membres, pour encourager, dans le respect de la législation, l'ouverture d'un dialogue plus ouvert et conscient avec les clients du monde entier.

Dans ce contexte, les membres garantissent au client des conseils complets avant-vente, une gamme complète de produits fabriqués selon des normes de qualité, d'impact environnemental et une assistance après-vente capable de fournir des réponses rapides aux besoins de service de l'utilisateur "comment", "où" et "quand" ils se présentent.

RESPONSABILITÉS RELATIVES AUX PRODUITS ET À LEUR UTILISATION

Le Client est responsable du bon choix et de l'utilisation du produit en fonction de ses besoins industriels et/ou commerciaux. Le client est toujours responsable de la sécurité dans le cadre des applications du produit.

Lors de l'élaboration du catalogue, une attention particulière a été accordée à l'exactitude des informations. Cependant, Seipee ne peut accepter la responsabilité directe ou indirecte de toute erreur, omission ou donnée obsolète.

En raison de l'évolution constante de l'état de la technique, Seipee se réserve le droit d'apporter à tout moment des modifications au contenu de ce document, qui ne doivent en aucun cas être considérées comme contraignantes.

Le client est responsable en dernier ressort du choix du produit, sauf accord contraire écrit et signé par les parties.

www.seipee.it

INDEX

I. CERTIFICATIONS ET NORMES	ح
Principales marques dans le monde	8
Normes de performance internationales cei	
Normes et autorisations	12
a cécupité	
2. SÉCURITÉ	14
Avertissements généraux de sécurité	1/
Installation et mise en service	1/
Entretien	
Disposition	
2. CADACTÉDICTIQUES TECUNIQUES	
3. CARACTÉRISTIQUES TECHNIQUES	
GÉNÉRALES.	18
Conception mécanique	10
Carcasses et composants externes	
Peinture	
Rotor	
Arbres	
Clés	
Positions de montage	
Roulements	
Charges radiales maximales	
Charges axiales maximales	
Équilibrage dynamique	
Niveaux sonores	28
Degré de protection	
Ventilation	
Conception électrique	32
Enroulement du stator	
Puissance de sortie en fonction de la température ambiante.	32
Puissance de sortie en fonction de l'altitude	32
Protection des enroulements contre la surchauffe	
Surcharge	33
Démarrages horaires	33
Alimentation avec des valeurs autres que nominales	
Moteurs entraînés par onduleur	
Tolérances	36
4. TYPOLOGIES DE SERVICE	30
E DÉMONINATION DES MOTEURS	
5. DÉNOMINATION DES MOTEURS	45
Dénomination des moteurs	
Données de plaque	46

5. MOTEURS TRIPHASÉS	49
essin éclaté des moteurs JM et GM	49
ranchements électriques	
E 4 MOTEURS onnées électriques des moteurs JM 2-4-6 pôles	
onnées électriques des moteurs JM 2-4-6 pôlesonnées électriques des moteurs GM 2-4-6 pôles	
onnées dimensionnelles JM 2-4-6 pôles avec dessins	
onnées dimensionnelles GM 2-4-6 pôles avec dessins	
E3 MOTEURS	
onnées électriques JM 2-4-6-8 pôles	
onnées électriques GM 2-4-6-8 pôles	
onnées dimensionnelles JM 2-4-6-8 pôles avec dessins	
onnées dimensionnelles GM 2-4-6-8 pôles avec dessins	
2 MOTEURS	
onnées électriques JM 2-4-6-8 pôles	
onnées dimensionnelles JM 2-4-6-8 pôles avec dessins	
1 MOTEURS	
onnées électriques JM 2-4-6-8 pôles	
onnées électriques GM 2-4-6-8 pôles	
onnées dimensionnelles JM 2-4-6-8 pôles avec dessins	
onnées dimensionnelles GM 2-4-6-8 pôles avec dessins	86
. MOTEURS TRIPHASÉ À DOUBLE VITESSE.	88
essin éclaté du moteur JMD et GMD	gc
ranchements électriques	
onnées des moteurs	
onnées électriques JMD et GMD 4/6 pôles	93
onnées électriques JMD et GMD 4/8 pôles	
onnées dimensionnelles JMD et GMD avec dessins	95
3. MOTEURS MONOPHASÉS	98
essin éclaté du moteur JMM	99
onnées des moteurs	
onnées électriques JMM 2-4 pôles	
ranchements électriques	.102
onnées dimensionnelles JMM avec dessins	102
. MOTEURS AUTO-FREINANTS	104
essin éclaté du moteur JMK et GMD	105
3 MOTEURS onnées électriques JMK 2-4-6-8 pôles	. IIU 111
onnées électriques GMK 2-4-6-8 pôlesonnées électriques GMK 2-4-6-8 pôles	
onnées dimensionnelles JMK 2-4-6-8 pôles avec dessins	
onnées dimensionnelles GMK 2-4-6-8 pôles avec dessins	
2 MOTEURS	
onnées électriques JMK 2-4-6-8 pôles	
onnées dimensionnelles JMK 2-4-6-8 pôles	
:1 MOTEURSonnées électriques JMK 2-4-6-8 pôles	
onnées électriques JMK 2-4-6-8 pôlesonnées électriques GMK 2-4-6-8 pôles	
onnées dimensionnelles JMK 2-4-6-8 pôles avec dessins	
onnées dimensionnelles GMK 2-4-6-8 pôles avec dessins	
ableaux de freins et schémas de connexion	131
stallation et entretien des moteurs auto-freinants	.143

10. EXÉCUTIONS NON STANDARD...

1 CERTIFICATIONS ET NORMES DE RÉFÉRENCE

• 1.1 PRINCIPALES MARQUES DE CONFORMITÉ DANS LE MONDE

MARQUE DE CONFORMITÉ POUR LE MARCHÉ EUROPÉEN

Il existe plusieurs marques spécifiques indiquant la conformité des produits avec les règles de sécurité en vigueur dans les différents pays.

Pour assurer la conformité aux normes et exigences du marché européen, il est nécessaire d'assurer la conformité à la norme EN 60204-1 et aux consignes de sécurité, à mentionner dans le manuel d'utilisation du fabricant du moteur électrique en question. Les moteurs Seipee sont conformes à la norme internationale CEI 60034 pour les machines électriques tournantes applicable dans tous les pays de la Communauté européenne, afin d'assurer une norme de sécurité appropriée.

Pour chaque produit, une «déclaration CE de conformité» est émise concernant les directives suivantes :

La marque CE est

obligatoire pour le

marché européen.

- **Directive Basse Tension 2014/35/UE** relative à l'harmonisation des législations des États membres concernant la mise à disposition sur le marché du matériel électrique destiné à être employé dans certaines limites de tension;
- **Directive sur la compatibilité électromagnétique 2014/30/UE** relative à l'harmonisation des législation des États membres concernant la compatibilité électromagnétique.
- **Directive RoHS 2011/65/UE et Dir. Annexe 2015/863/UE** relative à la limitation de l'utilisation de certaines substances dangereuses dans les équipements électriques et électroniques.
- **Directive REACH 2006/1907/UE** concernant l'enregistrement, l'évaluation et l'autorisation des substances chimiques, ainsi que les restrictions applicables à ces substances.
- Règlement (CE) n° 2019/1781 portant modalités d'application de la directive 2009/125/ CE du Parlement européen et du Conseil sur les exigences en matière d'écoconception applicables aux moteurs électriques.
- **Directive 2009/125/CE** établissant un cadre pour la fixation d'exigences en matière d'écoconception applicables aux produits liés à l'énergie.

c**AL**us

principaux marchés non européens :

Moteurs conformes aux normes et exigences du **marché canadien et américain,** approuvés par UL Enderwriters Laboratories Inc.c.

UK CA

Évaluation de la conformité au Royaume-Uni, pour les moteurs mis sur le **marché britannique** (Angleterre, pays de Galles et Écosse)

MARQUES DE CONFORMITÉ POUR LES MARCHÉS EXTRA-EUROPÉENS

Les moteurs Seipee sont disponibles sur demande avec un marquage de conformité adapté à la commercialisation sur les

Moteurs conformes aux normes et exigences de la **zone économique eurasienne** (Russie, etc.), approuvés par SERCONS.

Les moteurs sont conformes aux normes et exigences du **marché chinois,** approuvées par le CQC. Tous les moteurs Seipee conformes CCC ont une puissance ≤ 1,1 kW.

• 1.2 NORMES DE PERFORMANCE INTERNATIONALES CEI

STANDARD DE RENDEMENT

La norme internationale **CEI 60034:30-1:2014** identifie une base commune internationale pour la conception et classification des moteurs électriques et définition de nouvelles classes de performance adoptées au sein de la Communauté européenne :

- IE1 Rendement Standard
- IE2 Haut rendement
- IE3 Rendement Premium
- IE4 Rendement Super Premium

Les classes de rendement CEI sont déterminées à la puissance nominale (P_N) à la tension nominale (U_N) ,), en fonction du fonctionnement à 50 Hz et de la température ambiante de référence $(T_{neth} = 25 \, {}^{\circ}\text{C})$.

,12 ,18	2			
		4	6	8
,18	53,6	59,1	50,6	39,8
	60,4	64,7	56,6	45,9
,20	61,9	65,9	58,2	47,4
,25	64,8	68,5	61,6	50,6
,37	69,5	72,7	67,6	56,1
,40	70,4	73,5	68,8	57,2
,55	74,1	77,1	73,1	61,7
,75	77,4	79,6	75,9	66,2
1	79,6	81,4	78,1	70,8
5	81,3	82,8	79,8	74,1
,2	83,2	84,3	81,8	77,6
	84,6	85,5	83,3	80,0
	85,8	86,6	84,6	81,9
,5	87,0	87,7	86,0	83,8
,5	88,1	88,7	87,2	85,3
1	89,4	89,8	88,7	86,9
5	90,3	90,6	89,7	88,0
8,5	90,9	91,2	90,4	88,6
2	91,3	91,6	90,9	89,1
0	92,0	92,3	91,7	89,8
7	92,5	92,7	92,2	90,3
5	92,9	93,1	92,7	90,7
5	93,2	93,5	93,1	91,0
5	93,8	94,0	93,7	91,6
0	94,1	94,2	94,0	91,9
10	94,3	94,5	94,3	92,3
32	94,6	94,7	94,6	92,6
60	94,8	94,9	94,8	93,0

Puissance nominale	Nombre de pô	les		
kW	2	4	6	8
0,12	60,8	64,8	57,7	50,7
0,18	65,9	69,9	63,9	58,7
0,20	67,2	71,1	65,4	60,6
0,25	69,7	73,5	68,6	64,1
0,37	73,8	77,3	73,5	69,3
0,40	74,6	78,0	74,4	70,1
0,55	77,8	80,8	77,2	73,0
0,75	80,7	82,5	78,9	75,0
1,1	82,7	84,1	81,0	77,7
1,5	84,2	85,3	82,5	79,7
2,2	85,9	86,7	84,3	81,9
3	87,1	87,7	85,6	83,5
4	88,1	88,6	86,8	84,8
5,5	89,2	89,6	88,0	86,2

Puissance nominale	Nombre de pôles			
kW	2	4	6	8
7,5	90,1	90,4	89,1	87,3
11	91,2	91,4	90,3	88,6
15	91,9	92,1	91,2	89,6
18,5	92,4	92,6	91,7	90,1
22	92,7	93,0	92,2	90,6
30	93,3	93,6	92,9	91,3
37	93,7	93,9	93,3	91,8
45	94,0	94,2	93,7	92,2
55	94,3	94,6	94,1	92,5
75	94,7	95,0	94,6	93,1
90	95,0	95,2	94,9	93,4
110	95,2	95,4	95,1	93,7
132	95,4	95,6	95,4	94,0
160	95,6	95,8	95,6	94,3
200 ~ 1000	95,8	96,0	95,8	94,6

Puissance nominale	Nombre de pôle	S		
kW	2	4	6	8
0,12	66,5	69,8	64,9	62,3
0,18	70,8	74,7	70,1	67,2
0,20	71,9	75,8	71,4	68,4
),25	74,3	77,9	74,1	70,8
),37	78,1	81,1	78,0	74,3
),40	78,9	81,7	78,7	74,9
,55	81,5	83,9	80,9	77,0
0,75	83,5	85,7	82,7	78,4
,1	85,2	87,2	84,5	80,8
5	86,5	88,2	85,9	82,6
,2	88,0	89,5	87,4	84,5
	89,1	90,4	88,6	85,9
•	90,0	91,1	89,5	87,1
,5	90,9	91,9	90,9	88,3
5	91,7	92,6	91,3	89,3
	92,6	93,3	92,3	90,4
;	93,3	93,9	92,9	91,2
3,5	93,7	94,2	93,4	91,7
2	94,0	94,5	93,7	92,1
)	94,5	94,9	94,2	92,7
7	94,8	95,2	94,5	93,1
5	95,0	95,4	94,8	93,4
5	95,3	95,7	95,1	93,7
5	95,6	96,0	95,4	94,2
0	95,8	96,1	95,6	94,4
10	96,0	96,3	95,8	94,
2	96,2	96,4	96,0	94,9
0	96,3	96,6	96,2	95,1
e 200 à 249	96,5	96,7	96,3	95,4
e 250 à 314	96,5	96,7	96,5	95,4
e 315 à 1000	96,5	96,7	96,6	95,4

• 1.3 NORMES ET AUTORISATIONS

Les moteurs Seipee sont conformes aux normes et réglementations suivantes:

Standard	IEC	DIN VDE	CEI EN /H	ID .
Caractéristiques nominales et de fonctionnement	IEC 60034-1	DIN EN 60034-1 VDE 0530-1	EN 60034-	1
Degrés de protection des carters rotatifs de la machine (code IP)	IEC 60034-5	DIN EN 60034-5 VDE 0530-5	EN 60034-	5
Méthodes de refroidissement (code IC)	IEC 60034-6	DIN EN 60034-6 VDE 0530-6	EN 60034-	6
Formes de construction et types d'installation (code IM)	IEC 60034-7	DIN EN 60034-7 VDE 0530-7	EN 60034-	7
Marquage des terminaux et sens de rotation	IEC 60034-8	DIN EN 60034-8 VDE 0530-8	EN 60034-	8
Journal officiel de l'Union européenne L272/75 Règlement du Parlement européen établissant des exigences d'éco-conception pour la mise sur le marché et la mise en service des moteurs, y compris ceux intégrés dans d'autres produits. (Pour tous les États membres de l'Union européenne	-	Règlement (CE) n° 20 Commission du 1er oc		
Classes de rendement pour moteurs asynchrones triphasés vitesse unique (code IE)	IEC 60034-30 IEC 60034-30-1	DIN EN 60034-30 VDE 0530-30 VDE 0530-30-1	EN 60034- EN 60034-	
Méthodes de détermination des pertes et du rendement des essais	IEC 60034-2 IEC 60034-2-1 IEC 60034-2-2 IEC 60034-2-3	DIN EN 60034-2 VDE 0530-2 DIN EN 60034-2-1 VDE 0530-2-1 DIN EN 60034-2-2 VDE 0530-2-2 DIN EN 60034-2-3 VDE 0530-2-3	EN 60034- EN 60034- EN 60034- EN 60034-	2-1 2-2
Limites de bruit	IEC 60034-9	DIN EN 60034-9 VDE 0530-9	EN 60034-	9
Vibrations mécaniques	IEC 60034-14	DIN EN 60034-14 VDE 0530-14	EN 60034-	14
Dimensions et puissances normalisées	IEC 60072-1	DIN EN 50347	EN 50347	
Brides de fixation	IEC 60072	DIN 42948	UNEL 1350	1
Extrémités cylindriques d'arbre	IEC 60072	DIN 748-1 DIN 748-3	UNEL 1350	2
Languette et rainure de la languette	IEC 60072	DIN 6885-1	EN 50347 UNEL 1350	1
Dimensions de couplage et puissances du moteur sous forme IM B3	IEC 60072	DIN 42673	UNEL 13113	}
Dimensions de couplage et puissances du moteur sous forme IM B5	IEC 60072	DIN 42677	UNEL 13117	
Dimensions de l'accouplement et puissances moteur en forme IM B14	IEC 60072	DIN 42677	UNEL 13118	3
Comportement au démarrage, machines électriques tournantes	IEC 60034-12	DIN EN 60034-12 VDE 0530-1	EN 60034-	12
Protection thermique	IEC 60034-11	DIN EN 60034-11 VDE 0530-11	EN 60034-	11
Tensions normalisées CEI	IEC 60038	DIN IEC 60038	CEI 8-6	HD 47
Alimentation par convertisseurs à vitesse variable	IEC/TS 60034-17	DIN TS 60034-17 VDE 0530-17	TS 60034-1	17

Standard	IEC	DIN VDE	CEI EN /HD
Trou fileté dans la tête de l'arbre	-	DIN 332-2	UNI 9321
Presse-étoupes métriques pour installations électriques	-	DIN EN 50262	EN 50262
Limites de vibrations	-	DIN ISO 10816	UNI ISO 10816
Classification des matériaux d'isolation	IEC 60085	DIN IEC 60085 VDE 0580	EN 60085
Entrées dans le boîtier de connexion pour moteurs triphasés avec une tension nominale comprise entre 400V et 690V	-	DIN 42925	-

Les moteurs répondent également aux exigences appropriées de la **norme CEI60034-1** des normes étrangères suivantes :

Pays	Standard	
Royaume Uni / United Kingdom	BS5000 / BS4999	
Belgique / Belgium	NBNC 51 - 101	
Australie / Australia	AS 1359	
Norvège / Norway	NEK - IEC 34 - 41/69/49	
France / France	NFC 51	
Allemagne / Germany	DIN VDE 0530	
Autriche / Austria	OEVE M 10	
Suisse / Switzerland	SEV 3009	
Pays-bas / Netherlands	NEN 3173	
Suède / Sweden	SEN 260101	
Danemark / Denmark	DS 5002	
Pologne / Poland	PN 72/E - 0600	

■ 2 SÉCURITÉ

• 2.1 MISES EN GARDES GÉNÉRALES DE SÉCURITÉ

ATTENTION

Ces avertissements doivent être lus et suivis pour assurer la sécurité, l'installation correcte, le fonctionnement et la maintenance correcte de la machine.

Il est conseillé de consulter le Manuel d'utilisation et d'entretien, disponible sur notre site www.seipee.it avant de procéder à l'utilisation du produit.

AVERTISSEMENTS GÉNÉRAUX

Tous les moteurs SEIPEE triphasés asynchrones, monophasés, à double polarité et auto-freinants ne sont pas utilisables tels qu'ils sont fournis, mais sont destinés à être incorporés dans un équipement ou une machine.

Par conséquent, le moteur ne peut être mis en service avant que le produit dans lequel il sera incorporé ait été déclaré conforme aux directives pertinentes.

Le personnel utilisant et faisant fonctionner le moteur doit être correctement formé et qualifié et soumis au contrôle des responsables de l'installation, doit bien connaître les exigences locales en matière de santé, de sécurité et de législation.

Le fait d'ignorer ces instructions peut entraîner la déchéance des garanties applicables.

Les machines électriques rotatives à basse tension contiennent des éléments sous tension, des éléments rotatifs et en mouvement, des éléments superficiels et internes à une température supérieure à 50 °C pendant le fonctionnement normal.

Une mauvaise utilisation des moteurs et/ou le retrait ou la déconnexion des dispositifs de protection peuvent causer de graves dommages aux personnes, aux animaux et aux choses

En outre, nous déclinons toute responsabilité en cas de dommages dus à une utilisation non-conforme des moteurs ou au débranchement des protections électriques et mécaniques. Débrancher toujours le moteur de l'alimentation électrique avant de l'utiliser ou d'utiliser l'équipement qui y est connecté.

Les moteurs des séries JM, GM et JMM ne sont pas fabriqués en Italie.

En cas de dysfonctionnement ou de doute sur l'utilisation de l'équipement, envoyer un e-mail à info@seipee.it

• 2.2 INSTALLATION ET MISE EN SERVICE

Avant de mettre en service le moteur électrique, vérifier l'état général de conservation des pièces mécaniques, vérifier la rotation libre de l'arbre du moteur et s'assurer que les joints et le presse-étoupe du moteur sont installés correctement.

Le moteur électrique ne doit fonctionner exclusivement avec les caractéristiques nominales de la plaque.

Le moteur électrique doit être installé et entretenu conformément aux normes applicables de l'UE.

Effectuer toujours la mise à la terre du moteur avec de le brancher au secteur.

Avant de commencer la mise en service, assurez-vous d'une ventilation adéquate et d'un espace suffisant

pour assurer une circulation d'air adéquate (au moins 1/4 du diamètre de l'ouverture d'entrée d'air).

Éviter la proximité avec des sources de chaleur élevée.

S'il y a des trous de drainage de condensat, ceux-ci doivent toujours être tournés vers le bas.

En cas d'environnements humides et de condensation éventuelle, il est nécessaire d'ouvrir périodiquement les trous en agissant sur les vis situées au fond de la carcasse.

Lorsqu'une formation d'humidité est suspectée dans les enroulements, il est essentiel d'effectuer un contrôle de la résistance d'isolement entre les enroulements et vers le sol avec un outil spécial.

La résistance d'isolement à la température de 25°C doit dépasser la valeur de référence, soit 100 M Ω mesurée avec 500 ou 1000V CC. La valeur de la résistance d'isolation divise par deux toutes les 20 °C de l'augmentation de la température ambiante.

Immédiatement après la mesure, des tensions dangereuses sont présentes sur les bornes, par conséquent, à la fin de l'essai, il est toujours nécessaire de décharger les phases du moteur à la masse.

La mise en service ou test avec la clé sécurisée uniquement par le bouchon de protection de l'arbre est strictement interdite car la clé pourrait être projetée à cause de la force centrifuge.

L'utilisateur final a l'entière responsabilité de la préparation des fondations; les fondations métalliques doivent être traitées et peintes de manière appropriée pour éviter la corrosion.

Les fondations doivent être planes et suffisamment rigides pour supporter toute contrainte produite par le moteur électrique en cas de court-circuit.

Les fondations doivent être conçues et dimensionnées de manière à éviter le transfert de vibrations au moteur et l'apparition de vibrations dues à des phénomènes de résonance.

Les joints et les poulies de couplage doivent être montés sur l'arbre moteur en utilisant uniquement des outils qui n'endommagent pas les roulements et les joints du moteur. Ne jamais utiliser de tiges ou de leviers métalliques pour monter ou retirer des joints et des poulies faisant un point d'appui contre le corps du moteur.

En cas de couplage direct ou avec joint, prendre soin de l'alignement du moteur par rapport à l'axe de la machine accouplée. Si nécessaire, appliquer un joint élastique ou flexible pour prévenir les dommages aux roulements, les vibrations et les ruptures de l'arbre.

En cas de couplage par courroie, l'axe du moteur doit être parallèle à l'axe de la machine couplée. Le porte-à-faux de la poulie doit être le plus petit possible. Une tension excessive des courroies endommage les roulements et peut provoquer la rupture de l'arbre moteur.

L'équilibrage du moteur standard s'effectue avec une demi-clef, il faut donc équilibrer les joints et les poulies après usinage du siège de clef, avec la même méthode indiquée pour le moteur.

Dans les moteurs en position de montage B14 et B34,

les profondeurs de vissage utiles des vis sur les trous des brides ne doivent jamais dépasser le double du diamètre du filetage pour ne pas endommager l'enroulement du moteur (par exemple filetage de bride M5 = profondeur de vissage utile 10 mm max).

Après l'installation, refermer la boîte à bornes en veillant à ce que les joints ne soient pas endommagés et qu'ils soient bien positionnés dans leur siège de manière à ce que le degré de protection indiqué sur la plaque soit garanti.

Tous les moteurs sont équipés de presse-étoupes ou de prédispositions pour leur montage éventuel. Les moteurs non utilisés doivent être fermés pour les protéger contre l'entrée de corps solides et liquides et contre l'humidité.

Les presse-étoupes doivent être serrés autour du câble et le rayon de courbure d'arrivée des câbles ne doit pas permettre l'entrée dans l'eau. Veillez à utiliser des presse-étoupes avec des joints conformes au type de protection et au diamètre du câble utilisé.

Il est nécessaire de vérifier le sens de rotation des moteurs avant du couplage à la machine utilisatrice, lorsque cela peut causer des dommages aux personnes et/ou aux choses.

Pour inverser le sens de rotation dans les moteurs triphasés monopolaires, commuter les connexions de deux câbles d'alimentation quelconques entre eux. Pour les connexions des équipements auxiliaires (réchauffeurs, thermistances, sondes bimétalliques, etc.), toujours se référer au Manuel d'utilisation et d'entretien disponible sur notre site internet.

Pour les connexions à l'onduleur, si présent, toujours se référer aux manuels spécifiques du fournisseur d'électronique en fonction de l'onduleur utilisé.

Pour les moteurs avec des connexions spéciales autres que celles indiquées et les moteurs avec freins, toujours se référer aux schémas spécifiques fournis avec le moteur ou au Manuel d'utilisation et d'entretien disponible sur notre site web.

seipee[®]

• 2.3 DÉPLACEMENT

CONTRÔLE À LA RÉCEPTION

À la réception du moteur, il est essentiel de vérifier immédiatement qu'il n'a pas été endommagé pendant le transport. Si un dommage est constaté, il doit être immédiatement contesté auprès du transitaire en indiquant une réserve sur le document de transport.

TRANSPORT ET STOCKAGE

Le moteur doit être stocké dans un endroit couvert et sec, exempt de vibrations et de poussière. Pendant le transport, éviter les collisions, les chutes et l'exposition à l'humidité, ce qui pourrait entraîner une détérioration très rapide de l'isolation du moteur lui-même.

Les moteurs équipés de roulements à rouleaux cylindriques et/ou à contact oblique doivent toujours avoir l'arbre verrouillé pendant le transport. Il est recommandé de faire tourner l'arbre périodiquement à la main pour éviter la migration de la graisse de lubrification des pièces rotatives.

2.4 ENTRETIEN

Toute intervention sur le moteur doit être effectuée seulement après la déconnexion du moteur, des circuits auxiliaires éventuels (tels que les réchauffeurs anti-condensation, les ventilateurs externes, les freins, etc.), de tout convertisseur de fréquence et après s'être assuré qu'un démarrage accidentel ne peut se produire.

Dans les moteurs triphasés, le condensateur peut maintenir une charge mesurable, présente entre les bornes du moteur même lorsque le moteur est arrêté, il doit donc toujours se décharger à la terre.

Inspecter le moteur à intervalles réguliers, au moins une fois par an. Dans des environnements difficiles et humides, il faut adapter la fréquence en fonction des conditions.

Vérifiez que le moteur tourne correctement sans bruit ni vibration anormaux.

Si ce n'est pas le cas, vérifiez la fondation du moteur et l'équilibre de la machine couplée.

S'assurer que la ventilation n'est pas obstruée pour éviter une surchauffe et une éventuelle rupture ; garder le moteur propre de la poussière, de l'huile, de l'eau et des résidus d'usinage.

LEVAGE

Les moteurs doivent être levés et déplacés toujours à l'aide de dispositifs de prévention des accidents appropriés et conformément à la législation en vigueur en utilisant, si nécessaire, les œillets appropriés fournis avec le moteur.

Ne levez pas le moteur connecté à d'autres composants

à l'aide de ses œillets. Les œillets de levage doivent être serrés avant utilisation. Pendant les opérations de levage, s'assurer que l'équipement adéquat est utilisé et que les dimensions des crochets de levage sont conformes aux œillets présents sur le moteur, en veillant à ne pas endommager l'équipement auxiliaire et les câbles de connexion du moteur.

Vérifier que les câbles d'alimentation du moteur, du frein et de l'équipement auxiliaire ne présentent pas de signes de détérioration et que les connexions sont serrées de manière solide ; vérifier l'intégrité et l'équipotentialité des câbles de terre.

Vérifier que les vis de fixation du moteur et du système couplage sont correctement serrées sans fissures ni dommages.

Vérifier la tension de toutes les courroies (une tension élevée réduit considérablement la durée de vie des roulements et pourrait également entraîner la rupture de l'extrémité de l'arbre).

Vérifier l'état des joints et les graisser périodiquement car ces composants sont sujets à l'usure.

S'assurer que les protections thermiques ne sont pas exclues et sont correctement étalonnées.

Ouvrir périodiquement les trous de drainage du condensat, si présents..

Vérifier l'état des roulements à intervalles réguliers;

Ceux blindés ou étanches (lubrifiés à vie) qui ne nécessitent

pas de graissage doivent être remplacés à la fin de leur vie.

Les roulements non blindés sont dotés de graisseurs et doivent être lubrifiés à intervalles réguliers (pour la fréquence, le type et la quantité de graisse, voir l'étiquette présente sur le moteur ou consulter le catalogue technique). Pour les moteurs auto-freinant, vérifier l'entrefer de frein, l'épaisseur du disque de frein et le jeu du levier de déblocage (voir le catalogue technique). (consultare il catalogo tecnico).

Utiliser uniquement des pièces de rechange originales.

2.5 ÉLIMINATION

ATTENTION

Le symbole de la poubelle barrée figurant sur l'appareil électrique ET électronique (AEE) ou sur l'emballage indique que le produit à la fin de sa vie utile doit être éliminé séparément des autres déchets et ne doit pas être éliminé avec les autres déchets urbains mixtes.

Respecter les dispositions des lois nationales pour l'élimination de la machine ou des déchets générés par chaque phase du cycle de vie.

Pour plus d'informations sur l'élimination, s'adresser aux autorités locales ou visiter le site web du constructeur.

CARACTÉRISTIQUES TECHNIQUES

■ 3 CONCEPTION MÉCANIQUE

• 3.1 BOÎTIER ET COMPOSANTS EXTERNES (SELON CEI IEC 71-1)

SÉRIES JM, JMM, JMD

Carcasse légère en alliage d'aluminium moulé sous pression, avec une excellente conductivité thermique et une excellente résistance à la corrosion.

Sur les tailles 100, 112, 132, 160, il y a un anneau de levage pour le moteur uniquement.

Les pieds sont amovibles, avec possibilité d'installation sur les 3 côtés du moteur afin d'avoir la boîte à bornes du côté souhaité: IM B3, B5, B35, B14, B34.

De série, le moteur IMB3 est fourni avec une boîte à bornes en haut.

La boîte à bornes peut être orientée avec des paliers de 90°, et elle aussi est en alliage d'aluminium léger.

Les boucliers et brides sont également en alliage d'aluminium léger moulé sous pression, les logements des roulements sont renforcés en acier à partir de la taille 90. Bride B14 sur moteur JM 160 également disponible en fonte.

La boîte à bornes peut être orientée avec des paliers de 90°, et elle aussi est en alliage d'aluminium léger, de série, le moteur

3.2 PEINTURE

Les moteurs des séries JM, JMM et JMD de Seipee sont revêtus de poudre, tandis que les séries GM et GMD avec peinture à deux composants sont adaptées pour résister aux environnements industriels normaux et pour permettre des finitions supplémentaires avec des peintures synthétiques à un seul composant.

• 3.3 ROTOR

À cage d'écureuil en aluminium moulé sous pression ou en alliage (Al-Si) Silumin.

• 3.4 ARBRES

Ils sont en acier C40/C45 (UNI8373-7847), unifiés selon CEI-IEC72-1 avec extrémités cylindriques, trou fileté dans la tête et languette unifiée. La série GM a un arbre moteur verrouillé axialement.

• 3.5 CLÉS

En acier C40 de dimensions unifiées selon CEI IEC 72-1

IMB3 est fourni avec une boîte à bornes en haut.

SÉRIES GM, GMD

Carcasse en fonte avec œillet de levage. Les pieds en fonte sont partie intégrante de la carcasse.

La boîte à bornes en acier peut être orientée avec des paliers de 90°, de série, le moteur IMB3 est fourni avec une boîte à bornes haut. L'option de la boîte à bornes latérale est disponible sur demande.

Les boucliers et les brides sont entièrement en fonte.

Boîte à bornes Position standard en haut et à proximité du côté commande, avec entrée de câble d'alimentation côté droit pour JM et GM, et côté commande opposé pour les moteurs IMM.

Bornier d'alimentation moteur 6 bornes. Borne de terre positionnée à l'intérieur de la boîte à bornes. Borne externe supplémentaire pour GM 315... 450.

RAL 9006 - Gris perle **SÉRIE GM 160 ~ 450, GMD 180 ~ 250**

SÉRIE JM 56 ~ 160, JMM 56 ~ 100, JMD 80 ~ 160

RAL 5010 - Bleu

• 3.7 FORMES DE CONSTRUCTION ET POSITIONS **DE MONTAGE**

Les positions de montage requises par la **CEI 60034-7** sont IM B3, IM B5, IM B14 et les formes combinées IM B35 (B3/ B5) et IM B34 (B3/B14).

Les moteurs peuvent également fonctionner dans les positions de montage correspondantes avec un axe vertical; au moment de la demande du moteur, le code IM complet doit être spécifié pour vérifier toute restriction. La forme de construction avec axe horizontal reste indiquée sur la plaque du moteur. Les formes de construction et les positions de montage sont indiquées dans le tableau

ATTENTION

Au moment de la commande, il est important d'indiquer le type de forme de construction souhaité, car l'exécution du moteur lui-même dépend en partie de sa forme de construction..

suivant:

Tab. 3.7 ■ MONTAGES HORIZONTAUX (IM B**) ■ MONTAGES VERTICAUX (IM V**) GRANDFUR GRANDFIIR 180 280 180 280 355 Désignation Désignation 160 250 315 450 250 160 315 450 IM V1 - IM 3011 IM B3 - IM 1001 Bride avec trous 0 traversants IM V15 - IM 2011 IM B35 - IM 2001 Pieds et bride avec Pieds et bride avec trous traversants trous traversants IM B34 - IM 2101 IM V3 - IM 3031 Pieds et bride avec Bride avec trous trous filetés traversants IM V36 - IM 2031 IM B5 - IM 3001 Bride avec trous Pieds et bride avec traversants trous traversants IM B6 - IM 1051 IM V5 - IM 1011 Pieds IM B7 - IM 1061 IM V6 - IM 1031 Pieds IM V18 - IM 3611 IM B8 - IM 1071 Bride avec trous Pieds filetés IM B14 - IM 3601 IM V19 - IM 3631 Bride avec trous Bride avec trous filetés filetés

Légende: Possible; O En option; Vide: impossible.

3.8 ROULEMENTS

TYPOLOGIE ET DIMENSIONS

Seipee utilise des roulements sélectionnés pour une utilisation spécifique sur les moteurs électriques. Les moteurs en aluminium des séries JM, JMM et JMD sont équipés de roulements radiaux à billes rigides, avec une couronne, double bouclier, lubrifiés à vie. Les moteurs en fonte des séries GM et GMD iusqu'à la taille 250 sont par contre équipés de roulements fermés ZZ avec

jeu C3 lubrifiés à vie. De la hauteur d'axe 280 et au-delà, ils sont équipés de roulements ouverts, toujours avec jeu C3, et sont donc équipés d'un graisseur, pour la lubrification périodique nécessaire des roulements et l'évacuation relative de la graisse usée.

Les caractéristiques des roulements des moteurs standards sont indiquées dans le tableau suivant

■ TYPOLOGIE ET DIMENSIONS DES ROULEMENTS NORMALISÉS DU MOTEUR

						Tab. 3.8	
Mot	teur	Montage h IM B3, B35, B34, B			e vertical V5, V18, V6	Dimensions	
Taille,	pôles	Extrémité d'entraînement	Extrémité non d'entrainement	Extrémité d'entraînement	Extrémité non d'entrainement	[Ø _i x Ø _e x H]	
JM JM	IM 56	6201 2	ZZ C3	6201	12x32x10		
јм јм	IM 63	6201 2	ZZ C3	6201	ZZ C3	12x32x10	
JM JM	1M 71	6202 2	7Z C3	6202	ZZ C3	15x35x11	
јм јмм	JMD 80	6204 7	ZZ C3	6204	ZZ C3	20x47x14	
јм јмм	JMD 90	6205 2	7Z C3	6205	ZZ C3	25x52x15	
JM JMM	-	6206 2	ZZ C3	6206	ZZ C3	30x62x16	
JM JM	ID 112	6306 2	ZZ C3	6306	ZZ C3	30x72x19	
JM JM	D 132	6308 2	ZZ C3	6308	ZZ C3	40x90x23	
JM JM		6309 2	45x100x25				
• •	160	6309 2	6309 ZZ C3 6309 ZZ C3				
GM GM	1D 180	6311 Z	6311 ZZ C3 6311 ZZ C3				
	1D 200	6312 Z	Z C3	6312	ZZ C3	60x130x31	
	4D 225	6313 Z	Z C3	6313	ZZ C3	65x140x33	
	1D 250	6314 Z	ZZ C3	6314	ZZ C3	70x150x35	
	2	6314	· C3	631	4 C3	70x150x35	
GM 280	4~8	6317	G	631	85x180x41		
CM ME	2	6317	C3	631	7 C3	85x180x41	
GM 315	4~8	NU 319 E	6319 C3	6319 C3 ¹⁾	6319 C3 ²⁾	95x200x45	
CM SEE	2	6319	C3	6319 C3 ¹⁾	6319 C3 ²⁾	95x200x45	
GM 355	4~8	NU 322 E	6322 C3	6322 C3 ¹⁾	6322 C3 ²⁾	110x240x50	
GM	2	6319 C3	6319 C3	6319 C3 ¹⁾	7319 B	95x200x45	
355X	4~8	NU 324 E	6324 C3	6324 C3 ¹⁾	7324 B	120x260x55	
GM 400	2	6317 C3	6317 C3	6317 C3 ¹⁾	7317 B	85x180x41	
GIVI 400	4~8	NU 326 E	6326 C3	6326 C3 ¹⁾	7326 B	130x280x58	
CM /50	2	NU 222 E+6222 C3	NU 222 E	NU 222 E+6222 C3	7222 B	110x200x38	
GM 450	4~8	NU 228 E+6228 C3	NU228 E	NU 228 E+6228 C3	7228 B	140x250x42	

¹⁾ Le roulement à rouleaux cylindriques ne peut être utilisé que si le roulement est soumis à une charge radiale constante. Sinon il faut solliciter le moteur avec le roulement à billes.

3) Sur la série GM, le roulement est bloqué axialement en standard. Sur la série JM, il est possible de bloquer le roulement avant sur demande.

²⁾ Pour des charges axiales élevées, demander le moteur avec le roulement à billes à contact oblique de la série 7.

seipee

LUBRIFICATION ET ENTRETIEN

Pour les quantités de graisse (g) et l'intervalle de lubrification (h), toujours se référer à l'étiquette sur le couvercle du ventilateur du moteur.

Pour le remplissage, procéder en utilisant les deux graisseurs, l'un sur le bouclier/bride du côté de la commande et l'autre sur le bouclier du côté opposé à la commande. Il est également nécessaire de dévisser le bouchon de vidange (positionné dans la partie inférieure du bouclier/ de la bride) et de le recharger en fonction des quantités de graisse indiquées.

Pour ouvrir le bouchon de vidange sur le côté NDE, il est nécessaire, s'il n'y a pas de trou, ni de tuyau sur le couvercle du ventilateur, de retirer le couvercle du ventilateur et de dévisser le bouchon de vidange situé derrière le ventilateur sur le couvercle de serrage des roulements.

REMARQUE

Dans certains modèles, le trou de vidange est placé directement sur le bouclier! Fermez le trou susmentionné avec un capuchon et remontez le couvercle du ventilateur s'il a déjà été démonté. Maintenant vous pouvez continuer avec la procédure normale.

Si l'intervalle de relubrification est inférieur à six mois, toute la graisse existante doit être complètement remplacée après un maximum de 2, 3 remplissages.

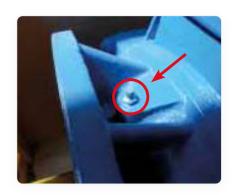
Si l'intervalle de lubrification est supérieur à six mois, toute la graisse doit être remplacée tous les six mois.

Pour remplacer complètement la graisse utilisée, si les supports sont accessibles, il est conseillé d'enlever la graisse existante et de lubrifier à nouveau le roulement manuellement.

L'espace libre à l'intérieur du roulement doit être rempli de graisse fraîche, tandis que l'espace dans le support doit être rempli de 30 à 50 %.

La quantité de graisse dans l'espace autour du roulement ne doit pas être excessive afin de ne pas provoquer une augmentation locale de la température qui serait nuisible à la fois à la graisse et au roulement. À ce stade de l'entretien, faites particulièrement attention à ne pas introduire d'impuretés dans le roulement ou dans le support. Veillez à ne pas placer de quantités excessives de graisse à l'intérieur du support et, une fois l'opération terminée, vissez le bouchon de vidange.

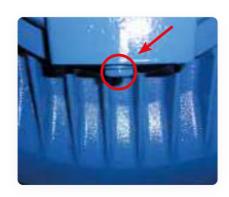
Avec des intervalles de lubrification très fréquents, nous recommandons l'application de systèmes de graissage automatiques, qui simplifient l'opération.

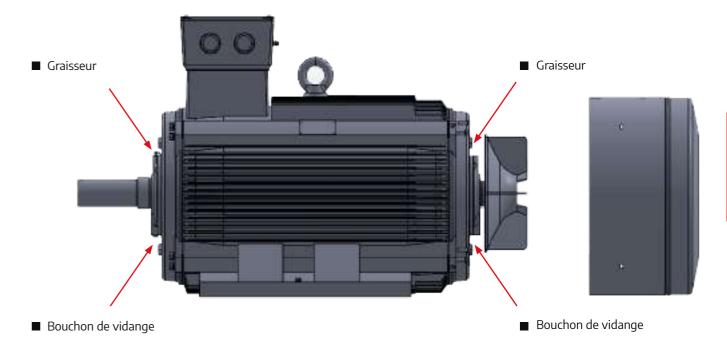

Une lubrification régulière est nécessaire pour la durée de vie des roulements et donc pour le fonctionnement du moteur lui-même.

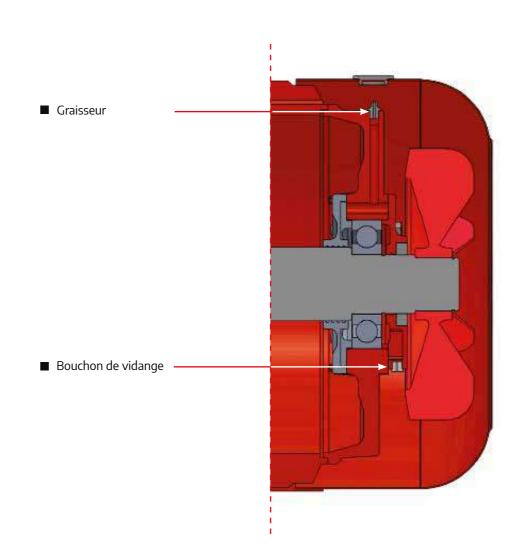
L'utilisation de graisse au lithium avec une base d'huile minérale de bonne qualité est recommandée

Marques recommandées

Shell Gadus S2 V100 2, SKF LGMT 2, Mobil Mobilux EP 2, Esso Beacon EP 2, BP Energrease LS 2 e TOTAL ALTIS SH2.


Position du graisseur côté commande




■ Position du **graisseur du côté opposé**

■ Position du **bouchon/vis de vidange**

■ GRAISSAGE DES ROULEMENTS

	Intervalle de lubrification* [h]																	
Moteur	Côté couplage						Côté opposé au couplage						Graisse [g]					
		50 pô	Hz les				Hz les		50 Hz 60 Hz pôles pôles									
	2	4	6	8	2	4	6	8	2	4	6	8	2	4	7	8	2	4~8
160*	3250	5450	7000	8300	2600	5000	6200	7500	3250	5450	7000	8300	2600	5000	6200	7500		13
180*	2750	5250	6750	8000	2100	4750	6000	7250	2750	5250	6750	8000	2100	4750	6000	7250		18
200*	2500	5000	6500	7700	1850	4500	5750	7100	2500	5000	6500	7700	1850	4500	5750	7100		20
225*	2250	4800	6000	7450	1500	4300	5400	6900	2250	4800	6000	7450	1500	4300	5400	6900		23
250*	2000	4650	5300	7250	1150	4150	4750	6600	2000	7650	5300	7250	1150	4150	4750	6600		26
280	2000	4300	5000	6900	1150	3800	4250	6400	2000	4300	5000	6900	1150	3800	4250	6400	26	37
315	1200	3000	4800	5500	500	2100	4000	5000	1200	3900	5750	7200	500	3500	5100	6200	37	45
355	700	2300	4300	5250	220	1600	3750	4800	700	3650	5250	6500	220	3000	4700	5900	45	60
355X	350	1900	4100	5000	100	1750	3500	4500	700	1900	4100	5000	250	1750	3500	4500	54	86
400	350	1600	3900	4800	100	1100	3100	4300	350	3200	4800	6200	250	2800	4300	5300	54	81
450	300	1300	3000	4500	100	800	2700	4000	300	2750	4500	5800	150	1750	4000	4600	65	93

* = Valable pour les graisses au lithium de bonne qualité, les températures de travail ne dépassant pas 90 °C, les applications avec arbre moteur horizontal et les charges normales.

Pour les applications avec arbre moteur vertical, divisez par deux les valeurs du tableau.

ROULEMENT ISOLÉ ÉLECTRIQUEMENT

Les roulements des moteurs électriques sont potentiellement soumis à des passages de courant qui endommagent rapidement les surfaces des pistes et des corps roulants et dégradent leur graisse.

Le risque d'endommagement augmente dans les moteurs électriques de plus en plus répandus équipés de convertisseurs de fréquence, en particulier dans les applications avec des variations de vitesse brusques. Dans les roulements de ces moteurs, il existe un risque supplémentaire dû à la présence de courants haute fréquence provoqués par les capacités parasites existantes à l'intérieur du moteur.

Pour les températures de travail supérieures à 90 °C, divisez par deux les v aleurs du tableau pour chaque élévation de température de 15 °C.

La température maximale de travail, relative à la graisse au lithium avec une base d'huile minérale de bonne qualité, est d'environ 110 °C.

La surface extérieure de la baque extérieure revêtue du roulement isolé électriquement est revêtue d'une couche d'oxyde d'aluminium de 100 µm d'épaisseur, capable de résister à des tensions de 1000 V CC, éliminant pratiquement les inconvénients dus aux passages de courant.

Seipee recommande d'utiliser des roulements isolés électriquement dans les moteurs équipés de convertisseurs de fréquence de taille 250.

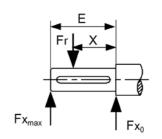
3.9 CHARGES RADIALES MAXIMALES APPLICABLES

Pour le couplage poulie-courroie, l'extrémité de l'arbre moteur portant la poulie est soumise à une contrainte radiale Fr, N appliquée à une distance x [mm] du support d'extrémité de l'arbre de longueur E.

La charge radiale maximale relativement applicable se réfère à la résistance mécanique de l'arbre moteur et non à la durée de vie des roulements.

■ CHARGES RADIALES MAXIMALES APPLICABLES À 50 HZ

										1ab. 3.9				
		Forces radiales - F ₀ (pas de forces axiales) [N]												
Moteur		E [mm]	2 P		4 P		6 P		8 F					
	2 Pol. 4~8 Pol.		X _{max} (x = E)	$X_0 (x = 0)$	X _{max} (x = E)	$X_0 (x = 0)$	X _{max} (x = E)	$X_0 (x = 0)$	X _{max} (x = E)	X ₀ (x = 0)				
				res										
56		20	200	240	200	240	-	-	-	-				
63		23	400	490	400	490	400	490	-	-				
71		30	740	815	740	815	740	815	740	815				
80		40	970	1120	970	1120	970	1120	970	1120				
90 S		50	1050	1210	1050	1210	1050	1210	1050	1210				
90 L		50	1050	1210	1050	1210	1050	1210	1050	1210				
100 L		60	1800	2280	1800	2280	1800	2280	1800	2280				
112 M		60	1800	2280	1800	2280	1800	2280	1800	2280				
132 S-M		80	2100 2600		2100	2600	2100	2600	2100	2600				
	20.000 heures													
160 M		110	2740	3540	3300	4085	3355	4100	3270	4200				
160 L		110	2600	3400	3000	3700	2900	3600	3370	4170				
180 M		110	3385	4100	3485	4270	-	-	-	-				
180 L		110	-	-	3485	4270	3800	4700	3900	4785				
200 L		110	4685	5600	5200	6285	5700	6800	5700	6800				
225 S	110	140	-	-	5900	7300	-	-	6900	8500				
225 M	110	140	5185	6100	5700	7085	5700	7100	6485	8000				
250 M		140	6285	7700	7000	8700	7600	9400	7800	9600				
280 S		140	6000	7300	7800	9200	8900	10600	9200	11700				
280 M		140	6000	7300	7800	9200	8900	10600	9200	11700				
315 S	140	170	6000	7300	9400	11400	9600	13000	9600	14400				
315 M-L	140	170	6400	7400	9700	11500	11100	13200	12200	19500				
355 M-L	170	210	6550	7350	12900	15300	13600	17600	13600	19400				
355 X	170	210	6550	7350	13000	15200	13600	17500	13000	19400				
400 M-L	170	210	6850	7650	11500	15600	11500	17800	11500	19700				
450 M-L	170	210	=	-	15200	17000	17000	19000	19000	21300				


Pour un fonctionnement à une fréquence donnée ff autre que 50 Hz, multipliez les valeurs du tableau par (50/ff) (1/3). Pour des durées des roulements plus longues, multipliez les charges de la table par les facteurs suivants : 0,87 (30.000 heures); 0,79 (40.000 heures); 0,74 (50.000 ore). Pour la série JMM, réduisez les charges indiquées dans le tableau de 20 %.

Si la charge radiale est appliquée entre les sections X_0 (x = 0) e X_{max} (x = E) aà une distance X [mm] de la section X_0 , sa valeur maximale $F_{rmax X}$ peut être supposée égale à :

$$F_{\text{rmax}, X} = F_{\text{rmax}, X_0} - \frac{F_{\text{rmax}, X_0} - F_{\text{rmax}, X_{\text{max}}}}{E} \bullet \rangle$$

Charge radiale maximale en correspondance de la section X_0 Charge radiale maximale en correspondance de la section X_{max}

[mm]: Distance de l'extrémité de l'arbre par rapport au support

• 3.10 CHARGES AXIALES MAXIMALES APPLICABLES

Les charges axiales maximales applicables sans charges radiales supplémentaires* sont indiquées dans le tableau suivant :

Tab. 3.10 ■ CHARGES AXIALES MAXIMALES APPLICABLES À 50 HZ Moteur Forces axiales - F (pas de forces radiales) [N] **Dessins** pôles 90 S 90 L 100 L 112 M 132 S 160 M 160 L 180 M 180 L 200 L 225 S 225 M 250 M 280 S 280 M 315 S 315M-L 355M-L 355 X M-L 450 M-L

Pour un fonctionnement à une fréquence donnée ff autre que 50 Hz, multipliez les valeurs du tableau par (50 / ff)(1/3). Pour des durées des roulements plus longues, multipliez les charges de la table par les facteurs suivants : 0,79 (30 000 heures) ; 0,71 (40 000 heures) ; 0,66 (50 000 heures). Pour la série JMM, réduisez les charges indiquées dans le tableau de 20 %.

• 3.11 ÉQUILIBRAGE DYNAMIQUE

L'équilibrage dynamique du rotor est effectué avec une moitié de languette insérée à l'extrémité de l'arbre, conformément à la norme **ISO 21940:20121.**

Les moteurs Seipee sont conçus de série avec un degré de vibration "N"; des moteurs avec un degré de vibration "R" peuvent être fournis sur demande. Les valeurs limites pour l'intensité des vibrations mécaniques sont indiquées dans le tableau suivant:

Tab. 3.11

■ INTENSITÉ MAXIMALE DES VIBRATIONS MÉCANIQUES

Hauteur d'axe H [mm]		56 < H ≤ 132			132 < H	l ≤ 280		280 > H		
Degré de vibration	Montage	Déplacement [µm]	Vitesse [mm/s]	Accélération [m/s²]	Dépl. [µm]	Vitesse [mm/s]	Accél. [m/s²]	Dépl. [µm]	Vitesse [mm/s]	Accél. [m/s²]
N normal	Suspension libre	25	1,6	2,5	35	2,2	3,5	45	2,8	4,4
	Montage rigide	21	1,3	2,0	29	1,8	2,8	37	2,3	3,6
R réduit	Suspension libre	11	0,7	1,1	18	1,1	1,7	29	1,8	2,8
	Montage rigide				14	0,9	1,4	24	1,5	2,4

ATTENTION

La position et la taille de la clé sont indiquées dans les dessins techniques pour chaque série de moteurs.

^{*} Consulter Seipee motori pour le sens des forces

selpee

3.12 NIVEAUX SONORES

Les valeurs de puissance acoustique admissibles pour les machines électriques tournantes sont établies par la norme **EN 60034-9.**

Le degré de bruit est calculé par le **niveau de pression acoustique,** à partir de la moyenne des valeurs mesurées à 1 m de la surface extérieure du moteur située dans le champ libre et sur un plan réfléchissant, conformément à la directive EN 60651 et indiqué en dB(A).

La vitesse dépend de la fréquence du réseau et du nombre de pôles du moteur.

Les valeurs indiquées dans le tableau sont valables pour le moteur à vide et la fréquence 50 Hz à la tension nominale, avec une tolérance de +3 dB(A).

Les valeurs du tableau à une fréquence de 60 Hz doivent être augmentées d'environ 2 dB (A).

Pour les moteurs à pôles commutables, les valeurs sont celles correspondant à la vitesse la plus élevée.

■ PRESSION ET PUISSANCE SONORE

Tab. 3.12

		Série JM, GM, GMD, JMM, JMK, GMK 2 pôles 4 pôles 6 pôles 8 pôles								Série IE3/IE2 - JM, GM, GMD, JMM, JMK, GMK						
Moteur										ôles		ôles		ôles		ôles
	vio	de 	vi	de 	vi	de 	vi	de 	vi	de 	vi	de 	vi	de 	vi 	de
	L pA	LwA	LpA	LwA	LpA	LwA	L pA	LwA	LpA	L wA	LpA	LwA	LpA	LwA	LpA	L wA
56	48	57	43	52	-	-	-	-	-	-	-	-	-	-	-	-
63	50	61	44	53	39	50	-	-	50	61	44	53	39	50	-	-
71	54	65	47	56	41	53	40	51	54	65	47	56	41	53	40	51
80	59	70	50	59	44	55	42	53	56	67	46	57	44	55	42	53
90	62	74	52	61	47	58	45	56	58	69	48	58	45	57	45	56
100	66	77	56	65	51	62	48	59	63	75	50	60	48	60	48	59
112	67	78	59	68	53	65	52	63	65	76	55	67	52	64	52	63
132	70	81	61	72	58	69	54	66	67	78	59	71	55	67	54	66
160	74	86	63	75	60	72	57	70	69	80	62	72	57	69	55	68
180	75	89	65	78	62	74	59	71	70	80	63	75	59	71	58	70
200	76	90	66	79	63	75	61	73	72	84	64	76	61	73	60	72
225	77	91	67	81	64	76	62	74	74	86	65	78	62	74	61	73
250	79	93	71	83	66	78	63	75	77	91	66	79	63	75	62	74
280	80	94	75	86	69	82	66	79	78	92	69	82	66	79	63	76
315	81	95	77	90	73	86	70	83	80	94	74	87	71	83	69	82
355	84	98	82	96	79	92	86	89	82	97	80	93	77	89	87	90
400	86	100	85	98	82	96	80	93	86	100	83	96	80	92	82	95
450	88	102	87	100	84	97	81	94	88	102	87	100	84	97	81	94

• 3.13 DEGRÉ DE PROTECTION IP

Le degré de protection mécanique est établi conformément à la norme **CEI 60034-5** et est indiqué par le mot IP suivi de deux chiffres.

Dans les moteurs Seipee, la protection standard IP55 contre la pénétration de l'eau et de la poussière est assurée par une bague d'étanchéité montée sur le bouclier avant. Les bagues d'étanchéité ont une bonne résistance aux vibrations et une bonne stabilité thermique et sont résistantes aux acides dilués et aux huiles minérales.

IP XY -► X = corps solides Y = liquides

■ PROTECTION CONTRE LES CORPS SOLIDES

Degré	Niveau de protection
0	Aucune protection
1	Protection contre les corps solides de plus de 50 mm
2	Protection contre les corps solides de plus de 12 mm
3	Protection contre les corps solides de plus de 2,5 mm
4	Protection contre les corps solides de plus de 1 mm
5	Protection contre les corps solides de plus (aucun dispositif nocif)
6	Pas d'entrée de poussière

■ PROTECTION CONTRE LES LIQUIDES

Degré	Niveau de protection
0	Aucune protection
1	Protégé contre la chute verticale de gouttes d'eau (condensation)
2	Protégé contre la chute verticale de gouttes d'eau avec une inclinaison allant jusqu'à 15°
3	Protégé contre la chute verticale de gouttes d'eau avec une inclinaison allant jusqu'à 15°
4	Protégé contre les projections d'eau de toutes directions
5	Protégé contre les jets d'eau de toutes directions
6	Protégé contre les jets d'eau sous pression (similaires aux vagues de la mer)
7	Protégé contre les effets de l'immersion temporaire (entre 0,15 et 1 m)
8	Protégé contre les effets de l'immersion temporaire (entre 0,15 et 1 m)

selpee

3.14 VENTILATION

Conformément à la **norme CEI 60034-6**, les moteurs Seipee sont ventilés avec la méthode de refroidissement IC411, c'est-à-dire «machine refroidie à partir de sa propre surface par le fluide environnemental (air) qui circule le long de la machine».

Le refroidissement est effectué au moyen d'un ventilateur externe à la carcasse du moteur, bidirectionnel avec des pales radiales, claveté sur l'arbre NDE et protégé par un couvercle du ventilateur en tôle d'acier spécial

ATTENTION

Même une obstruction accidentelle de la grille du couvercle du ventilateur peut affecter le refroidissement du moteur. Il est recommandé de maintenir une distance minimale entre l'extrémité du couvercle du ventilateur et tout obstacle égal à 1/4 du diamètre de l'ouverture d'entrée d'air.

■ MODE DE VENTILATION Machine fermée, refroidie par la surface par conversion naturelle et irradiation. Aucun IC 410 ventilateur externe Machine fermée. Boîtier ventilé lisse ou avec nervures. Ventilateur externe, monté sur IC 411 Machine fermée. Carcasse fermée lisse ou avec nervures. IC 416 R* Ventilateur motorisé externe radial (R) fourni avec la machine pour des applications spécifiques. Machine fermée. Carcasse fermée lisse ou avec nervures. Ventilateur axial motorisé IC 416 externe fourni avec la machine. Machine fermée. Carcasse fermée lisse ou avec nervures. Aucun ventilateur externe. IC 418 Ventilation assurée par le flux d'air provenant de l'extérieur.

L'utilisation de moteurs asynchrones dans la variation de vitesse au moyen d'un variateur de fréquence ou de tension nécessite des précautions particulières.

En effet, en cas de fonctionnement prolongé à faible vitesse, la ventilation perd de son efficacité, et il est donc conseillé d'installer un système de ventilation forcée à débit constant. A l'inverse, en cas de fonctionnement prolongé à grande vitesse, le bruit émis par le système de ventilation peut dépasser les limites indiquées dans le tab. 3.12, et il est donc conseillé d'opter pour un système de ventilation forcée.

Les caractéristiques du servo-ventilateur et la variation ΔL de la valeur LB (voir « dimensions moteurs ») sont reportées dans le tableau suivant.

■ CARACTÉRISTIQUES DU VENTILATEUR AXIAL AUXILIAIRE

Tab. 3.14

										1ab. 3.14
Moteur	Pôles	Étapes	V ~ ± 10%	Hz	W ass.	A ass.	Pôles	Protection	Poids [Kg]	ΔL [mm]
63	2~8	1	230	50/60	17/13	0,13/0,10	2	IP54	1,1	60
71	2~8	1	230 Y 400	50/60 50	17/13 55	0,13/0,10 0,26	2	IP54	1,0 2,2	70 130
		1	230	50/60	17/13	0,13/0,10			1,2	65
80	2~8	3	Y 400	50	55	0,13/0,10	2	IP54	2,3	110
		1	230	50/60	31/24	0,24/0,18			1,6	70
90	2~8	3	Y 400	50	55	0,24,0,10	2	IP54	2,4	110
		1	230	50/60	31/24	0,24/0,18			1,6	
100	2~8	3	Y 400	50/60	45/43	0,13/0,09	2	IP54	2,1	75
112	2~8	1	230 Y 400	50/60 50/60	70/65 45/43	0,35/0,30	2	IP54	2,2 2,5	85
		1	230	50/60	64/78	0,30/0,34	2		2,8	
132	2~8	3	Y 400	50/60	77/101	0,32/0,36	4	IP55	7,0	70
160	2~8	3	400/480	50/60	43/62	0,31/0,35	4	IP55	8,0	120
180	2~8	3	400/480	50/60	97/138	0,32/0,35	4	IP55	9,0	140
200	2~8	3	400/480	50/60	81/116	0,22/0,24	6	IP55	11,0	195
225	2~8	3	400/480	50/60	115/169	0,25/0,28	6	IP55	12,0	180
250	2~8	3	400/480	50/60	114/168	0,24/0,27	6	IP55	14,0	225
280	2~8	3	400/480	50/60	187/262	0,64/0,70	8	IP55	19,0	230
315	2~8	3	400/480	50/60	199/285	0,64/0,70	8	IP55	24,0	210
355	2~8	3	400/480	50/60	238/349	0,64/0,72	8	IP55	29,0	215
355X	2~8	3	400/480	50/60	238/349	0,64/0,72	8	IP55	29,0	360
400	2	- 3	Δ 400	50	2600	5,0	4	IP54	33,5	380
400	4~8	3	Δ 400	50	2530	4,9	4	IF34	33,5	360
450	4~8			Cons	sultez Seipee p	our plus d'info	ormations			

Les bornes d'alimentation de la ventilation auxiliaire sont situées à l'intérieur d'une boîte à bornes auxiliaire solidaire au couvercle du ventilateur. Avant d'effectuer la connexion électrique, s'assurer que l'alimentation électrique correspond aux données électriques figurant sur la plaque.

REMARQUE

Vérifier que le sens de rotation du ventilateur triphasé correspond à celui indiqué par la flèche sur le couvercle du ventilateur, sinon inverser deux des trois phases d'alimentation.

■ 3.15 CONCEPTION ÉLECTRIQUE

3.16 ENROULEMENT DE STATOR

Les moteurs Seipee sont construits avec un système d'isolation de classe F, conforme à la norme **EN 60034-1**. Système d'isolation classe F/B pour tous les moteurs à puissance normalisée ; classe B ou B/F pour les moteurs triphasés et monophasés restants.

Le double fil de cuivre émaillé est utilisé avec un système d'imprégnation dans un autoclave avec des résines de haute qualité, ce qui permet son utilisation en climat tropical sans besoin de traitements supplémentaires. Séparation précise des enroulements de phase (dans la carrière et dans la tête) ; isolation précise de la « tresse » (câbles de démarrage de phase).

Tous les moteurs Seipee sont équipés de séparateurs de phase pour le fonctionnement de l'onduleur. Sur demande, il est possible d'effectuer une isolation de classe H.

CLASSE ISOLATION B (130)

- Température ambiante nominale 40 °C
- Marge de température maximum admissible 80K
- Marge de température sur le point chaud 10K

CLASSE ISOLATION F (155)

- Température ambiante nominale 40 °C
- Marge de température maximum admissible 105K
- Marge de température sur le point chaud 10K

CLASSE ISOLATION H (180)

- Température ambiante nominale 40 °C
- Marge de température maximum admissible 125K
- Marge de température sur le point chaud 10K

• 3.17 PUISSANCE DE SORTIE EN FONCTION DE LA TEMPÉRATURE AMBIANTE

Les moteurs standard sont en classe F et peuvent fonctionner avec une température ambiante de -15 / + 40 ° C. Avec une température ambiante supérieure à 40 °C, il y a une réduction de la puissance livrable

Température ambiante [°C]	25	30 - 40	45	50	55	60	
P/P _N	1,07	1,00	0,95	0,90	0,85	0,80	

• 3.18 PUISSANCE DE SORTIE EN FONCTION DE L'ALTITUDE

Les performances du catalogue sont destinées à une altitude inférieure à 100 mètres au-dessus du niveau de la mer. À une altitude de plus de 1 000 mètres au-dessus du niveau de la mer, il y a une réduction de la puissance livrable

Altitude s.l.m. [m]	0 ~ 1000	1500	2000	2500	3000	3500	4000
P/P _N	1,00	0,97	0,93	0,89	0,85	0,80	0,74

• 3.19 PROTECTION DE L'ENROULEMENT CONTRE LA SURCHAUFFE

Les sondes de température sont essentielles pour la protection du moteur électrique contre la surchauffe. Les bornes des sondes de protection thermique sont situées à l'intérieur de la boîte à bornes.

SONDES THERMIQUES BIMÉTALLIQUES KLIXON (PTO)

Équipées de série sur les moteurs IM 160 e GM 160 ~ 450

SONDES THERMIQUES À THERMISTANCE (PTC)

Équipées en série sur tous les moteurs ≥0.75kW

CAPTEUR DE TEMPÉRATURE PT100

Option sur demande

Caractéristiques

Il s'agit de trois sondes connectées en série avec un contact normalement fermé inséré dans l'enroulement du moteur.

Le contact est ouvert lorsque la température de l'enroulement atteint et dépasse la valeur d'intervention.

$$V_{N, max} = 250 [V]$$

 $I_{N, max} = 1.6 [A]$

Caractéristiques

Il s'agit de trois thermistances connectées en série insérées dans l'enroulement conformément à la norme DIN 44081/44082, pour être connectées à un équipement de décrochage.

Il y a un changement soudain de la résistance qui provoque le relâchement lorsque la température de l'enroulement atteint et dépasse la valeur d'intervention 150°C pour l'isolation de classe F (standard) 160°C pour l'isolation de classe H.

Caractéristiques

Il s'agit d'un capteur de température conforme à la norme DIN IEC 751, à connecter à un équipement de décrochage spécial.

Enroulement: trois capteurs PT100 insérés dans l'enroulement, un pour chaque phase. Bornes situées à l'intérieur de la boîte à bornes du moteur.

Roulements: un capteur PT100 inséré dans le support de roulement (côté commande, côté opposé à la commande). Bornes placées à l'intérieur d'une boîte de dérivation

solidaire à la carcasse du moteur.

3.20 SURCHARGE

À la température de fonctionnement, les moteurs triphasés sont capables de supporter pendant 15 secondes une surcharge de 1,5 fois le couple nominal, à la tension nominale. Cette surcharge est conforme à la **norme EN 60034-1** et ne provoque pas un échauffement excessif du moteur.

3.21 DÉMARRAGES HORAIRES

Le nombre maximal de démarrages horaires autorisé est donné dans le tableau suivant, à condition que le moment d'inertie supplémentaire ≤ le moment d'inertie du rotor : couple de charge qui augmente avec le carré de la vitesse jusqu'au couple nominal et démarre à intervalles constants.

Hauteur d'axe	Nombre de dém	arrages autorisés par heu	ire
	2 Pôles	4 Pôles	6 Pôles
56-71	100	250	350
80-100	60	140	160
112-132	30	60	80
160-180	15	30	50
200-225	8	15	30
250-315	4	8	12

• 3.22 ALIMENTATION DU MOTEUR TRIPHASÉ AUTRE QUE LES VALEURS NOMINALES

Les moteurs électriques Seipee avec tension d'alimentation triphasée sont conçus pour être utilisés sur le réseau européen 230/400V ± 10% a 50Hz.

Cela signifie que le même moteur peut également être connecté aux réseaux électriques suivants :

220/380V ±5% - 230/400V ±10% - 240/415V ±5%.s

Les mêmes moteurs électriques peuvent fonctionner avec une fréquence à 60 Hz avec des performances et des quantités électriques différentes, comme indiqué dans le tableau suivant

■ ALIMENTATION NON NOMINALE DU MOTEUR TRIPHASÉ

Tab. 3.22

al::			native		Facteurs de correction par rapport à l'aliment. nominal 50 Hz							
	Alimentation nominale		Tension [V]				P	n	1	T	l _s	$T_{s,}T_{max}$
			diff. %	Δ	Y	diff. %	[kW]	[min-1]	[A]	[Nm]	[A]	[Nm]
			-4,3%: :	220	380	: -5,0%	1	1	0,95 ÷ 1,05	1	0,96	0,90
		50	4,3% :	240	415	: 3,8%	1	1	0,95 ÷ 1,05	1	1,04	1,08
Δ	Υ		-20,6% (1)	220	380	(1) -20,8%	1	1,19	0,95 ÷ 1,05	0,84	0,79	0,63
230	400		-17,0% (1)	230	400	(1) -16,7	1	1,2	0,95	0,85	0,83	0,80
[V]	[V]	60	-7,9% (2)	255	440	(2) -8,3%	1,1	1,2	0,95 ÷ 1	0,92	0,92	0,84
			-4,3% :	265	460	: -4,2%	1,15	1,2	0,95 ÷ 1,05	1	0,96	0,92
			Nom. :	278	480	: Nom.	1,2	1,2	1	1	1	1
		50	-5,0% :	380			1	1	0,95 ÷ 1,05	1	0,95	0,90
		30	3,8% :	415	-		1	1	0,95 ÷ 1,05	1	1,04	1,08
Δ			-20,8% (1)	380			1	1,19	0,95 ÷ 1,05	0,84	0,79	0,63
400			-17,0% ₍₁₎	400			1	1,2	0,95	0,85	0,83	0,80
[V]		60	-8,3% (2)	440			1,1	1,2	0,95 ÷ 1	0,92	0,92	0,84
			-4,2% :	460			1,15	1,2	0,95 ÷ 1,05	1	0,96	0,92
			Nom. :	480			1,2	1,2	1	1	1	1

- (1) = Tension d'alimentation non recommandée pour un fonctionnement intensif et prolongé du moteur. Le moteur peut fonctionner avec cette alimentation mais il ne doit pas avoir de démarrages à pleine charge; la puissance requise ne doit pas dépasser la valeur nominale. La surchauffe du moteur peut s'avérer être plus élevée.
- (2) = Le moteur peut fonctionner avec cette alimentation, mais il ne doit pas démarrer à pleine charge.

ATTENTION

L'efficacité d'un moteur peut varier lorsqu'il est alimenté à des valeurs de tension/fréquence autres que les valeurs nominales.

• 3.23 MOTEURS ENTRAÎNÉS PAR ONDULEUR

Tous les moteurs asynchrones triphasés Seipee en configuration standard sont équipés d'un enroulement avec séparateurs de phase pour une utilisation avec un onduleur.

Il est essentiel de tenir compte des indications suivantes :

Tension maximale de sortie de l'onduleur sur le moteur U_N ≤ 500V avec un pic U_{peak} ≤ 1500V et des gradients de tension dU/dt ≤1,5 kV/µs. Dans les situations où des tensions plus élevées ou des pics sont requis, des systèmes d'isolation spéciaux doivent être prévus. Par conséquent, il est nécessaire de consulter le fabricant.

Le couple (T) qui peut être fourni par le moteur Seipee, sous onduleur, suit le graphique ci-dessous.

Dans les applications où la courbe de couple de charge est quadratique par rapport à la vitesse, les moteurs fonctionnent en délivrant le couple nominal.

Courbe (1) Indique la décroissance du couple disponible sur l'arbre moteur lorsque l'on entre dans la zone de puissance constante : la décroissance commence lorsque la tension sur les phases du moteur atteint une valeur égale à celle de l'alimentation du variateur et que la fréquence augmente au-delà de la valeur nominale exprimée sur la plaque.

Dans les conditions décrites ci-dessus, le couple décroît selon la formule suivante : $T = Tn / 2\pi x f [Hz]$.

Dans ce mode de fonctionnement, le courant absorbé par le moteur avec charge appliquée ne doit PAS dépasser la valeur nominale.

Courbe (2) Indique la décroissance du couple lorsque, à travers l'onduleur, les phases du moteur connectées en triangle sont alimentées avec la valeur de tension prévue pour la connexion en étoile.

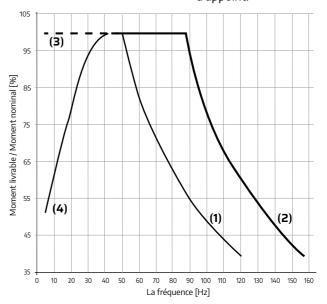
Dans ce mode, il est possible d'augmenter la zone de fonctionnement à couple constant du moteur jusqu'à une valeur de vitesse proportionnelle à : **fn [Hz] x v3** (Ex avec fn = 50 Hz on obtient 87Hz).

En augmentant la vitesse de rotation de $\sqrt{3}$, en maintenant le couple constant à la valeur nominale, on aura une augmentation de la puissance mécanique pouvant être fournie par le moteur égale à : P [kW] = Pn x $\sqrt{3}$.

ATTENTION:

1) dans cette configuration le moteur absorbera, à charge nominale, la valeur du courant en couplage triangle (In = IΔ) exprimée sur la plaque.

Il est recommandé de NE PAS dépasser cette valeur.


1) Les valeurs à régler dans le convertisseur de fréquence (onduleur) relatives à :

- Tension nominale **Vn [Vac]**
- Fréquence nominale **fn [Hz]**
- Puissance nominale **Pn [kW]**
- Tours nominaux **n [RPM]**

Ils doivent être augmentés de $\sqrt{3}$ (x 1,732) par rapport aux valeurs exprimées dans la plaque pour le raccordement en triangle.

Point (3) Pour les applications à couple constant <35 Hz, le moteur doit être asservi. En fonctionnement <50Hz avec moteur servo-ventilé ou auto-ventilé à service intermittent, le couple reste constant.

Courbe (4) Couple nominal en Nm = 9550 x (puissance nominale [kW] / vitesse de rotation [min-1]). Le couple nominal des moteurs autoventilés avec fonctionnement <50 Hz est réduit comme indiqué dans le graphique ci-dessous. Selon la plage de réglage, il est conseillé d'utiliser une ventilation forcée d'appoint.

▶ Selon le point de fonctionnement, le type d'onduleur et la fréquence de commutation, les moteurs génèrent des niveaux de bruit plus élevés, allant d'environ 4 à 10 dB (A), par rapport aux moteurs alimentés directement sur le réseau Cette augmentation comprend la contribution due à l'augmentation vitesse du ventilateur, il est donc recommandé d'utiliser une ventilation forcée.

▶ Seipee recommande d'utiliser des roulements isolés électriquement de taille 250 pour l'utilisation du moteur sous onduleur.

^{*} Pour les tensions et fréquences non indiquées dans le tableau, consulter Seipee

3.24 TOLÉRANCES

Tous les moteurs industriels conformes à la **norme EN 60034-1** sont soumis à des tolérances de production admissibles, établies sur la base des valeurs garanties. La norme prévoit ce qui suit :

1

Les tolérances suivantes ne doivent pas forcement être garanties. Dans le cas contraire, cela doit être écrit.

2

Il convient de faire attention à l'interprétation différente du terme « garantie ». En fait, dans certains pays, il existe une différence entre les valeurs garanties et les valeurs caractéristiques ou déclarées.

3

Lorsque vous spécifiez une tolérance dans une direction, la valeur n'a pas de limites dans l'autre direction.

TOLÉRANCES ÉLECTRIQUES

Caractéristique	Tolérances
Rendement η	-0.15 (1 - η) a P _N ≤ 150Kw -0.1 (1 - η) a P _N > 150Kw
Facteur de puissance cos φ	(1 - cos φ) / 6 [minimum 0.02, maximum 0.07]
Défilement s	±20% du débit a P _{N≥1kW} ±30% du débit a P _{N≤1kW}
Courant rotor bloqué I _A	+20% du courant de démarrage garanti (pas de limite inférieure)
Couple de démarrage M _A	-15% e +25% du couple de démarrage garanti
Couple maximum M _K	-10%
Moment d'inertie J	± 10%

TOLÉRANCES MÉCANIQUES

Les dimensions des moteurs asynchrones sont indiquées dans la **norme CEI 60072-1**, qui indique les tolérances admissibles suivantes :

■ TABLEAU DES TOLÉRANCES ÉLECTRIQUES Caractéristique Désignation **Tolérances** Jusqu'à 250 -0,5 mm Н Hauteur d'axe au-delà de 250 -1 mm De 1à 28 mm j6 Diamètre de l'extrémité de l'arbre D De 38 à 48 mm k6 De 55 à 100 mm m6 Largeur de la languette Н9 Jusqu'à 132 J6 Centrage de la bride Μ Au-delà de 132 H6

new energy for your business.

seipee.it

TYPOLOGIES DE **SERVICE**

4 TYPOLOGIES DE SERVICE

4.1 TYPES DE SERVICE

Les valeurs des moteurs indiquées dans les tableaux se réfèrent aux moteurs fonctionnant en **mode de service S1, fonctionnement continu avec une charge constante.**

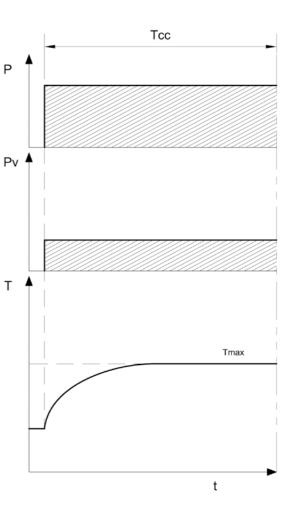
Charge: ensemble des valeurs des grandeurs électriques et mécaniques caractérisant les exigences imposées à une machine tournante par un circuit électrique ou un dispositif mécanique, à un instant donné.

Service: la définition de la ou des charges auxquelles la machine est soumise, y compris (le cas échéant) les périodes de démarrage, de freinage électrique, à vide et au repos, ainsi que leur durée et leur séquence dans le temps.

Les **normes EN 60034-1** prévoient également les types de services suivants :

SERVICE CONTINU - SERVICE S1

Fonctionnement à charge constante de durée suffisante pour atteindre l'équilibre thermique.


P = Charge

Pv = Fuites électriques

T = Température

t = Temps

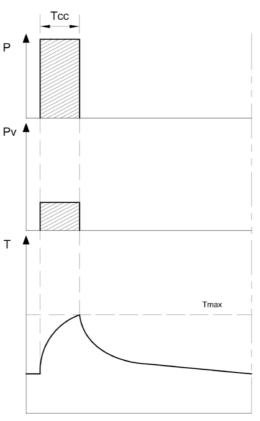
Tcc = Temps de fonctionnement à charge constante Tmax = Température maximale atteinte

41

SERVICE À DURÉE LIMITÉE -SERVICE S2

Fonctionnement à charge constante pendant un temps donné, inférieur à celui nécessaire pour atteindre l'équilibre thermique, suivi d'une période de repos de durée suffisante pour rétablir l'égalité entre la température de la machine et celle du fluide de refroidissement, avec une tolérance de 2 K.

P = Charge


Pv = Fuites électriques

T = Température

t = Temps

Tcc = Temps de fonctionnement à charge constante

Tmax = Température maximale atteinte

SERVICE INTERMITTENT PÉRIODIQUE SERVICE S3

Séquence de cycles de fonctionnement identiques, comprenant chacun une période de fonctionnement en charge constante et une période de repos. Dans ce service, le cycle est tel que le courant de démarrage n'influence pas de manière significative la surchauffe.

Le service périodique implique que l'équilibre thermique n'est pas atteint pendant la période de charge.

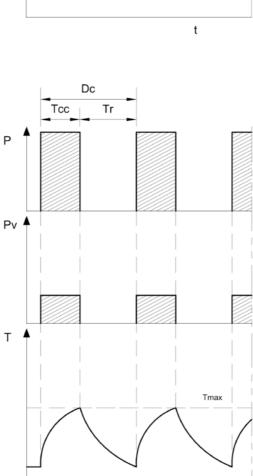
P = Charge

Pv = Fuites électriques

T = Température

t = Temps

40


Dc = Durée d'un cycle

Tcc = Temps de fonctionnement à charge constantee

Tr = Temps de repos

Tmax = Température maximale atteinte

Rapport d'intermittence = Tcc/ (Tcc+Tr) * 100 %

SERVICE INTERMITTENT PÉRIODIQUE AVEC DÉMARRAGE SERVICE S4

Séquence de cycles de fonctionnement identiques, comprenant chacun une phase de démarrage non marginale, une période de fonctionnement en charge constante et une période de repos. Le service périodique implique que l'équilibre thermique n'est pas atteint pendant la période de charge.

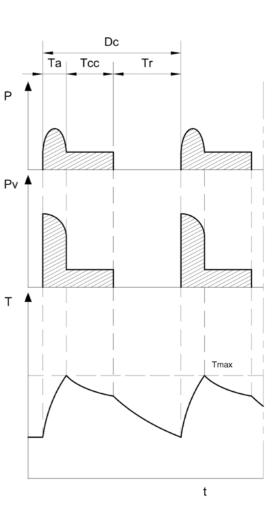
P = Charge

Pv = Fuites électriques

T = Température

t = Temps

Dc = Durée d'un cycle


Ta =Temps de démarrage ou d'accélération

Tcc = Temps de fonctionnement à charge constante

Tr = Temps de repos

Tmax = Température maximale atteinte

Rapport d'intermittence = (Ta+Tcc) / (Ta+Tcc+Tr) * 100 %

SERVICE INTERMITTENT PÉRIODIQUE AVEC FREINAGE ÉLECTRIQUE SERVICE S5

Séquence de cycles de fonctionnement identiques, comprenant chacun une phase de démarrage, une période de fonctionnement en charge constante, une phase de freinage électrique rapide et une période de repos.

Le service périodique implique que l'équilibre thermique n'est

pas atteint pendant la période de charge.

P = Charge

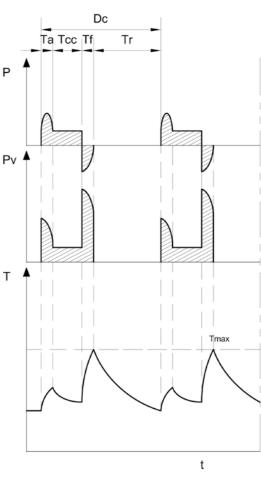
Pv = Fuites électriques

T = Température

t = Temps

Dc = Durée d'un cycle

Ta = Temps de démarrage ou d'accélération


Tcc = Temps de fonctionnement à charge constante

Tf = Temps de freinage électrique

Tr = Temps de repos

Tmax = Température maximale atteinte

Rapport d'intermittence = (Ta+Tcc+Tf) / (Ta+Tcc+Tf+Tr) * 100 %

Selpe

SERVICE PÉRIODIQUE ININTERROMPU - SERVICE S6

Séquence de cycles de fonctionnement identiques, comprenant chacun une période de fonctionnement en charge constante et une période de fonctionnement à vide. Il n'y a pas de période de repos.

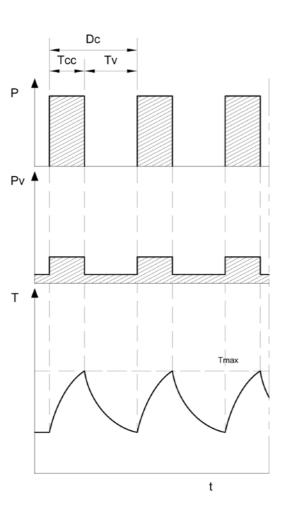
Le service périodique implique que l'équilibre thermique n'est pas atteint pendant la période de charge.

P = Charge

Pv = Fuites électriques

T = Température

t = Temps


Dc = Durée d'un cycle

Tcc = Temps de fonctionnement à charge constante

Tv = Temps de fonctionnement à vide.

Tmax =Température maximale atteinte

Rapport d'intermittence = Tcc / (Tcc+TV) * 100 %

SERVICE PÉRIODIQUE ININTERROMPU AVEC FREINAGE ÉLECTRIQUE - SERVICES7

Séquence de cycles de fonctionnement identiques, comprenant chacun une phase de démarrage, une période de fonctionnement en charge constante, une phase de freinage électrique.

Il n'y a pas de période de repos.

Le service périodique implique que l'équilibre thermique n'est pas atteint pendant la période de charge.

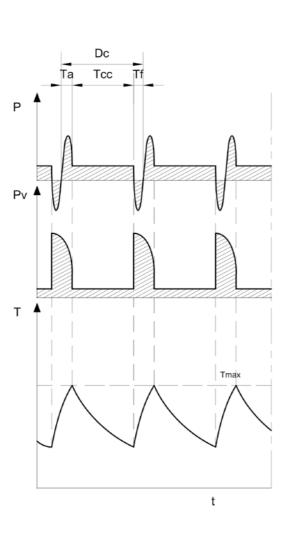
P = Charge

Pv = Fuites électriques

T = Température

t = Temps

Dc = Durée d'un cycle


Ta = Temps de démarrage ou d'accélération

Tcc = Temps de fonctionnement à charge constante

Tf = Temps de freinage électrique

Tmax =Température maximale atteinte

Rapport d'intermittence = 1

SERVICE PÉRIODIQUE ININTERROMPU AVEC VARIATION DE CHARGE ET DE VITESSE ASSOCIÉE - SERVICE S8

Séquence de cycles de fonctionnement identiques, comprenant chacun une période de fonctionnement en charge constante correspondant à une vitesse de rotation prédéterminée, suivie d'une ou plusieurs périodes de fonctionnement avec d'autres charges constantes correspondant à des vitesses de rotation différentes (par exemple en changeant le nombre de pôles dans le cas de moteurs à induction).

Il n'y a pas de période de repos.

Le service périodique implique que l'équilibre thermique n'est pas atteint pendant la période de charge.

P = Charge

Pv = Fuites électriques

T = Température

n = Vitesse

t = Temps

Dc = Durée d'un cycle

Tf 1° - 2° - 3° = Temps de freinage électriqueTa =Temps de démarrage ou d'accélération

Tcc 1° - 2° - 3° = Temps de fonctionnement à charge constante

Tmax = Température maximale atteinte

Rapport d'intermittence =

(Ta+Tcc1) / (Ta+Tcc1+Tf1+Tcc2+Tf2+Tcc3) * 100% (Tf1+Tcc2) / (Ta+Tcc1+Tf1+Tcc2+Tf2+Tcc3) * 100% (Tf2+Tcc3) / (Ta+Tcc1+Tf1+Tcc2+Tf2+Tcc3) * 100%

P Ta Tcc Tf Tmax Tmax

SERVICE AVEC VARIATIONS DE CHARGE ET DE VITESSE NON PÉRIODIQUES - SERVICE S9

Service où la charge et la vitesse varient généralement de manière non périodique dans la plage de fonctionnement autorisée. Ce service comprend les surcharges fréquemment appliquées qui peuvent être bien supérieures aux valeurs de pleine charge.

P = Charge

Pv = Fuites électriques

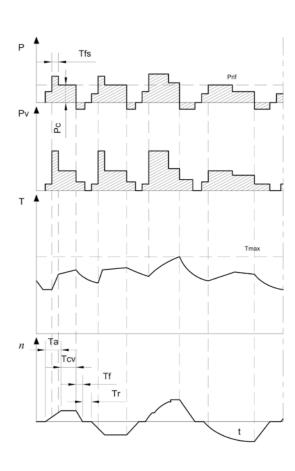
T = Température

n = Vitesse

t = Temps

Ta = Temps de démarrage ou d'accélération

Tcv = Temps de fonctionnement à charge variable


Tf = Temps de freinage électrique

Tr = Temps de repos

Tfs = Temps de fonctionnement en surcharge

Pc = Pleine charge

Tmax = Température maximale atteinte

Selpee

DÉNOMINATION DU MOTEUR

Saviez-vous que nous avons mis à jour les plaques moteur Seipee avec QR Code qui vous permettent de consulter, d'une simple touche, le manuel technique de votre moteur?

5 DÉNOMINATION DU MOTEUR

Pour passer une commande, il est nécessaire d'indiquer quelques informations essentielles :

- **1** Rendement: IE4 IE3 IE2
- 2 Type de moteur: 1ph (monophasé) / 3ph (triphasé)
- 3 Vitesse ou nombre de pôles: 2 4 6 8 pôles / 1000 1500 3000rpm
- 4 Série moteur: JM GM JMD GMD JMK GMK JMM etc.
- **6** Hauteur d'axe: 56 63 71 80 90 100 112 132 160 180 200 225 250 280 315 355 400 etc.
- **6** Puissance: 0,37 kW, etc.
- **7** Forme de construction: B3 B5 B5V1 B3/B5 B14 B3/B14 etc.
- **8** Tension et fréquence: 230-400V 50Hz / 400-690V 50Hz / 230-460V 60Hz etc.
- Tous accessoires ou conceptions non standard: voir chapitre respectif

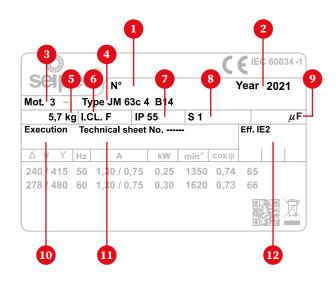
EXEMPLE DE COMMANDE DE MOTEUR

IE3 - 3ph - 4 Poli - JM - 112Ma - 4 kW - B5 - 230-400 V 50 Hz

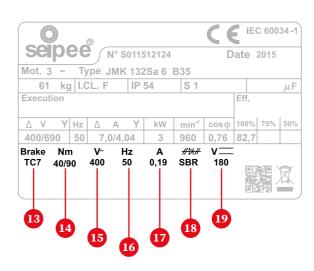
1	2	3	4	5	6	7	8
Rendement	Typologie	Vitesse/Pôles	Série	Hauteur d'axe	Puissance	Forme	Tension et fréquence
	1nh		JM / GM				230-400V 50Hz
15 (152 152	1ph	2, 4, 6, 8,	JMK / GMK		[kW]	B3, B5, B14,	400-690V 50Hz
IE4, IE3, IE2	2.1	4/6, 4/8	JMD / GMD	56 ~ 450		B35, B34	230-460V 60Hz
	3ph		IMM				etc

Sur les pages suivantes seront utilisés les symboles et unités de mesure suivants

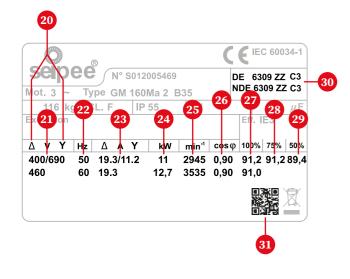
cos φ	=	Facteur de puissance nominal
η	=	Efficacité (P _{resa} /P _{assorbita})
I _N	=	Courant nominal
Is	=	Courant de démarrage
J	=	Moment d'inertie
n_N	=	Vitesse nominale
P_N	=	Puissance nominale [kW]
Tmax	=	Couple maximal [Nm]
T_N	=	Couple maximal [Nm]
T_s	=	Couple de démarrage [Nm]
Øi	=	Diamètre interne [mm]
Øe	=	Diamètre externe [mm]
C	=	Condensateur de marche [µF]
C_{F}	=	Condensateur de démarrage [µF]
*	=	Puissance ou correspondance puissance



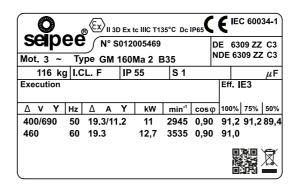
• 5.1 DONNÉES RELATIVES À LA PLAQUEÀ LA PLAQUE


Tous les moteurs sont fournis avec une plaque en aluminium. Toutes les plaques sont gravées au laser et montrent les données du moteur électrique conformément à la norme de référence.

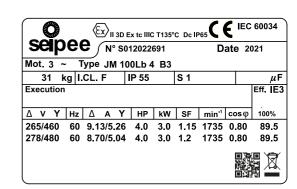
EXEMPLE DE SÉRIE JM / JMM

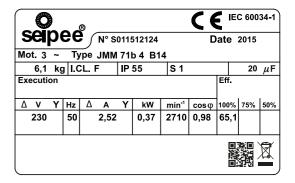

- Numéro de série
- 2 Année
- 3 Nombre de phases
- Type de moteur / taille / nombre de pôles / désignation de la forme de construction
- Masse du moteur
- 6 Classe d'isolation
- 7 Degré de protection
- 8 Service
- 9 Capacité du condensateur (série JMM)
- Capacité du condensateur auxiliaire (série JMM)
- Toute exécution spéciale
- Classe d'efficacité

EXEMPLE DE MOTEURS AVEC FREIN


- 13 Abréviation de frein
- Moment de freinage
- Tension nominale en c.a. alimentation de freinage
- 16 Fréquence nominale de freinage
- Courant nominal de freinage
- 18 Code redresseur (frein CC uniquement)
- Tension nominale en c.c. alimentation de freinage

EXEMPLE DE SÉRIE GM/GMM




- 20 Connexion de phases
- Tension nominale
- 22 Fréquence nominale
- 23 Courant nominal
- 24 Puissance nominale
- **25** Vitesse nominale
- 26 Facteur de puissance
- 27 100 % d'efficacité de charge
- 28 Rendement 75% charge
- 29 Rendement 50% charge
- Taille et type de roulements
- **31** QR Code

AUTRES EXEMPLES

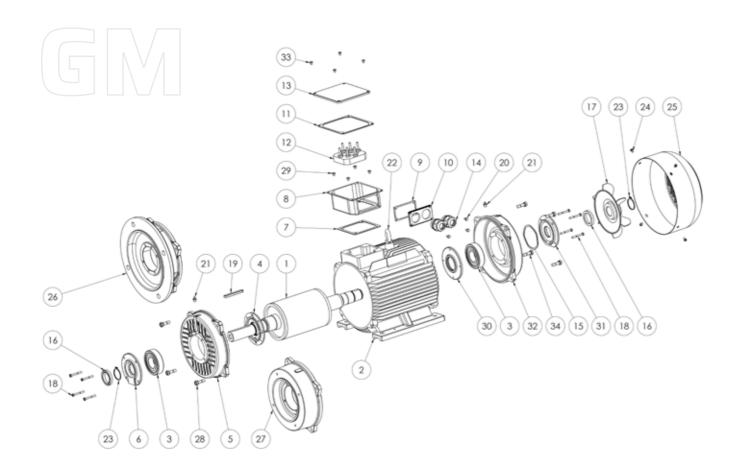


			9		certificate 8137	C	N	us (•	IEC 60	034-1
sei	p€	Эе	, N°	S012	005469					6309 Z	
Mot. 3	~	Ту	pe GM	160	Ma 2 E	33	5		NDE	6309 2	ZZ C3
11	6 kg	I.C	L. F	IP	55		S 1				μF
Execut	ion								Ef	f. IE3	
						_			_		
∆ v	Υ	Hz	Δ A	Υ	kW	1	min ⁻¹	cos	φ 10	0% 75%	6 50%
400/6	90	50	19.3/1	1.2	11	2	2945	0,90	91	,2 91	2 89,4
460		60	19.3		12,7	3	3535	0,90	91	١,0	
											X

MOTEURS TRIPHASÉS JM-GM

- 1) Languette
- 2) Tirant
- 3) Joint pour boîte à bornes
- 4) Vis de fixation boîte à bornes
- 5) Vis de fixation couvercle de la boîte à bornes
- 6) Couvercle de la boîte à bornes
- 7) Serre-câble
- 8) Bornier
- 9) Vis de fixation du bornier
- 10) Boîte à bornes
- 11) Écrou
- 12) Bouclier B3 côté opposé commande
- 13) Ressort de précontrainte
- 14) Ventilateur
- 15) Bague d'étanchéité
- 16) Bague élastique de sécurité

- 17) Couvercle du ventilateur
- 18) Roulements
- 19) Vis de fixation du couvercle du ventilateur
- 20) Rotor
- 21) Vis de fixation pied pour IMB3
- 22) Carcasse
- 23) Pied pour IMB3
- 24) Bouclier côté commande pour IMB3
- 25) Arbre
- 26) Rondelle
- 27) Stator
- 28) Bouchon
- 29) Joint pour couvercle boîte à bornes
- 30) Bride IMB14
- 31) Bride IMB5



seipee

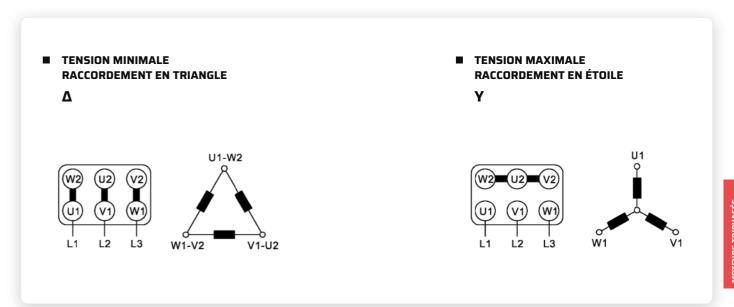
SÉRIE GM

Moteurs de la série GM des tailles 160 à 450, en fonte, avec pieds en fonte.

- Arbre avec rotor
- 2) Carcasse
- 3) Roulement
- 4) Bride interne de blocage du roulement du côté commande
- 5) Bouclier côté commande
- 6) Bride externe de blocage du roulement du côté commande
- 7) Joint pour boîte à bornes
- 8) Boîte à bornes
- 9) Joint cache pour boîte à bornes
- 10) Cache pour boîte à bornes
- 11) Joint couvercle boîte à bornes
- 12) Bornier
- 13) Couvercle pour boîte à bornes
- 14) Serre-câble
- 15) Ressort de précontrainte
- 16) Bague d'étanchéité
- 17) Ventilateur
- 18) Vis de fixation bride externe pour blocage du roulement

- 19) Languette
- 20) Vis cache pour boîte à bornes
- 21) Graisseur
- 22) Ceillets de levage
- 23) Bague élastique de sécurité
- 24) Vis de fixation
- 25) Couvercle du ventilateur
- 26) Bride IMB5
- 27) Bride IMB14 (seulement taille GM 160)
- 28) Vis de fixation du bouclier IMB3 côté commande
- 29) Vis de fixation boîte à bornes
- 30) Bride interne de blocage du roulement du côté opposé de la commande
- 31) Bride externe de blocage du roulement du côté opposé de la commande
- 32) Bouclier côté opposé commande IMB3
- 33) Vis de fixation couvercle boîte à bornes
- 34) Vis de fixation du bouclier IMB3 du côté opposé à la commande

• 6.2 RACCORDEMENTS ÉLECTRIQUES


Les enroulements des moteurs triphasés à une vitesse peuvent être connectés en étoile ou en triangle.

La liaison triangulaire est obtenue en reliant la fin d'une phase avec le début de la phase suivante. Le courant de phase I_{ph} et la tension de phase U_{ph} sont respectivement: $I_{nh} = I_n / \sqrt{3}$; $U_{nh} = U_n$

Où I et est le courant de ligne et U la tension de ligne par rapport à la connexion triangulaire.

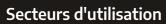
La connexion en étoile est obtenue en connectant W2, U2 e V2 et en alimentant U1, V1, W1. Le courant de phase I_{ph} et la tension de phase U_{ph} sont respectivement: $I_{ph} = I_{ph}$; $U_{ph} = U_{ph} / V3$

Où I¸ e U¸ se réfèrent à la connexion en étoile.

Le démarrage du moteur étoile-triangle permet de réduire le courant de démarrage en réduisant le couple de démarrage, et ne peut donc être adopté que si le couple de démarrage obtenu est supérieur au couple résistant. Le couple de démarrage d'un moteur asynchrone est directement proportionnel au carré de la tension, de sorte que les moteurs dont la tension de triangle nominale correspond à la tension du réseau peuvent être démarrés par la méthode du triangle en étoile.

MOTEURS ASYNCHRONES TRIPHASÉS IE4 JM-GM

Grandeur	JM	Grandeur	GM
80 ~ 160		160 ~ 355	
Puissance	JM	Puissance	GM
0.75 ~ 18.5 kW		11 ~ 315 kW	
Polarité	JM	Polarité	GM
2. 4. 6 pôles		2. 4. 6 pôles	



• 6.3 DONNÉES ÉLECTRIQUES JM IE4

SÉRIE JM 2 POLÉS IE4

Tab. 6.3.1

IE4	Moteurs	\mathbf{P}_{N}	n _N	T_N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	1	Poids
	JM	kW	min-1	Nm	Α		100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
Z	80 a	0,75	2910	2,46	1,58	0,82	83,5	83,5	81,8	7,0	2,3	2,3	0,0013	11
50Hz	80 b	1,1	2920	3,60	2,25	0,83	85,2	85,2	83,5	7,3	2,2	2,3	0,0016	11,6
700	90 S	1,5	2930	4,89	2,98	0,84	86,5	86,5	84,8	7,6	2,2	2,3	0,0018	16
∆/Y 230/400V	90 La	2,2	2930	7,17	4,25	0,85	88,0	88,0	86,2	7,6	2,2	2,3	0,0024	20,6
3 ₩2	100 La	3	2935	9,8	5,59	0,87	89,1	89,1	87,3	7,8	2,2	2,3	0,0040	24,5
7	112 Ma	4	2940	13,0	7,29	0,88	90,0	90,0	88,2	8,3	2,2	2,3	0,0080	42
	132 Sa	5,5	2945	17,8	9,92	0,88	90,9	90,9	89,1	8,3	2,0	2,3	0,0180	46
50Hz	132 Sb	7,5	2950	24,3	13,40	0,88	91,7	91,7	89,9	7,9	2,0	2,3	0,0240	52
400V	160 Ma	11	2960	35,5	19,30	0,89	92,6	92,6	90,7	8,1	2,0	2,3	0,0480	95
D 4(160Mb	15	2960	48,4	26,10	0,89	93,3	93,3	91,4	8,1	2,0	2,3	0,0600	103
	160 La	18,5	2960	59,7	32,00	0,89	93,7	93,7	91,8	8,2	2,0	2,3	0,0708	115

SÉRIE JM 4 POLÉS IE4

Tab. 6.3.2

IE4	Moteurs	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	J	Poids
	JM	kW	min-1	Nm	Α		100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
2	80 b	0,75	1430	5,01	1,68	0,75	85,7	85,7	84,0	6,6	2,3	2,3	0,0031	12,9
50Hz	90 S	1,1	1445	7,27	2,40	0,76	87,2	87,2	85,5	6,8	2,3	2,3	0,0037	16,8
700	90 La	1,5	1450	9,88	3,19	0,77	88,2	88,2	86,4	7,0	2,3	2,3	0,0044	20
230/400V	100 La	2,2	1455	14,4	4,38	0,81	89,5	89,5	87,7	7,6	2,3	2,3	0,0076	26
Δ/Υ 2	100 Lb	3	1455	19,7	5,84	0,82	90,4	90,4	88,6	7,6	2,3	2,3	0,0095	31,3
7	112 Ma	4	1460	26,2	7,73	0,82	91,1	91,1	89,3	7,8	2,2	2,3	0,0134	39,2
50Hz	132 Sa	5,5	1470	35,7	10,40	0,83	91,9	91,9	90,1	7,9	2,0	2,3	0,0305	51,2
V 50	132 Ma	7,5	1470	48,7	13,90	0,84	92,6	92,6	90,7	7,5	2,0	2,3	0,0415	65
4007	160 Ma	11	1475	71,2	20,00	0,85	93,3	93,3	91,4	7,7	2,2	2,3	0,0988	97,3
⊲	160 La	15	1475	97,1	26,80	0,86	93,9	93,9	92,0	7,8	2,2	2,3	0,1160	109

SÉRIE JM 6 POLÉS IE4

Tab. 6.3.3

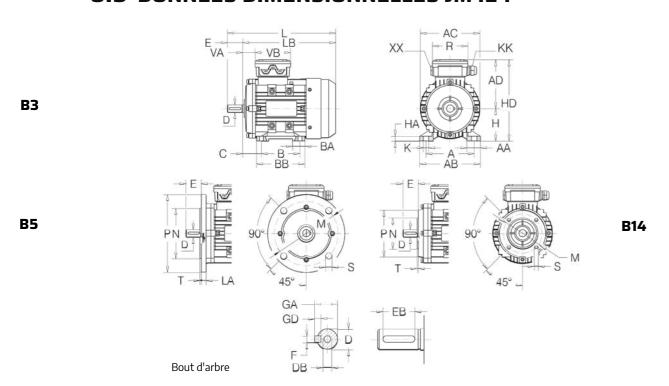
IE4	Moteurs	\mathbf{P}_{N}	n _N	T_N	I _{N (400 V)}	COSφ		η		I _s	T _s	T_{max}	J.	Poids
	JM	kW	min ⁻¹	Nm	Α		100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
>	90 S	0,75	950	7,54	1,84	0,71	82,7	82,7	81,0	6,0	2,0	2,1	0,0042	17,2
230/400V 50Hz	90 La	1,1	955	11,0	2,57	0,73	84,5	84,5	82,8	6,0	2,0	2,1	0,0047	22,4
	100 La	1,5	960	14,9	3,45	0,73	85,9	85,9	84,2	6,5	2,0	2,1	0,0090	33,5
Δ/≺	112 Ma	2,2	965	21,8	4,91	0,74	87,4	87,4	85,7	6,6	2,0	2,1	0,0170	38,6
	132 Sa	3	970	29,5	6,60	0,74	88,6	88,6	86,8	6,8	2,0	2,1	0,0310	46
50Hz	132 Ma	4	975	39,2	8,72	0,74	89,5	89,5	87,7	6,8	2,0	2,1	0,0380	54
400V	132 Mb	5,5	975	53,9	11,70	0,75	90,5	90,5	88,7	7,0	2,0	2,1	0,0480	61,8
D4 (160 Ma	7,5	980	73,1	15,00	0,79	91,3	91,3	89,5	7,0	2,0	2,1	0,0950	88,3
	160 La	11	980	107,2	21,50	0,80	92,3	92,3	90,5	7,2	2,0	2,1	0,1200	125

• 6.4 DONNÉES ÉLECTRIQUES GM IE4

SÉRIE GM 2 POLÉS IE4 Tab. 6.4.1

IE4	Moteurs	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	J	Poids
IL4	GM	kW	min-1	Nm	Α		100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
	160 Ma	11	2960	35,49	19,3	0,89	92,6	92,6	90,7	8,1	2,0	2,3	0,0480	133
	160 Mb	15	2960	48,39	26,1	0,89	93,3	93,3	91,4	8,1	2,0	2,3	0,0600	146
	160 La	18,5	2960	59,68	32,0	0,89	93,7	93,7	91,8	8,2	2,0	2,3	0,0708	160
	180 M	22	2965	70,85	38,0	0,89	94,0	94,0	92,1	8,2	2,0	2,3	0,1116	221
	200 La	30	2970	96,46	51,5	0,89	94,5	94,5	92,6	7,6	2,0	2,3	0,1680	260
	200 Lb	37	2970	118,96	63,3	0,89	94,8	94,8	92,9	7,6	2,0	2,3	0,1956	309
ZH	225 M	45	2975	144,44	76,0	0,90	95,0	95,0	93,1	7,7	2,0	2,3	0,2940	370
400V 50Hz	250 M	55	2975	176,54	92,6	0,90	95,3	95,3	93,4	7,7	2,0	2,3	0,4000	520
400,	280 S	75	2980	240,33	126	0,90	95,6	95,6	93,7	7,1	1,8	2,3	0,7800	570
⊲	280 M	90	2982	288,21	151	0,90	95,8	95,8	93,9	7,1	1,8	2,3	0,8520	630
	315 S	110	2980	352,49	184	0,90	96,0	96,0	94,1	7,1	1,8	2,3	1,5600	985
	315 M	132	2980	422,99	220	0,90	96,2	96,2	94,3	7,1	1,8	2,3	2,4000	1050
	315 Mb	160	2980	512,71	264	0,91	96,3	96,3	94,4	7,2	1,8	2,3	2,8200	1160
	315 Lb	200	2980	640,89	329	0,91	96,5	96,5	94,6	7,2	1,8	2,2	3,2400	1200
	355 M	250	2985	799,77	411	0,91	96,5	96,5	94,6	7,2	1,6	2,2	4,0800	2050
	355 L	315	2985	1007,71	518	0,91	96,5	96,5	94,6	7,2	1,6	2,2	4,6800	2380

SÉRIE GM 4 POLÉS IE4 Tab. 6.4.2

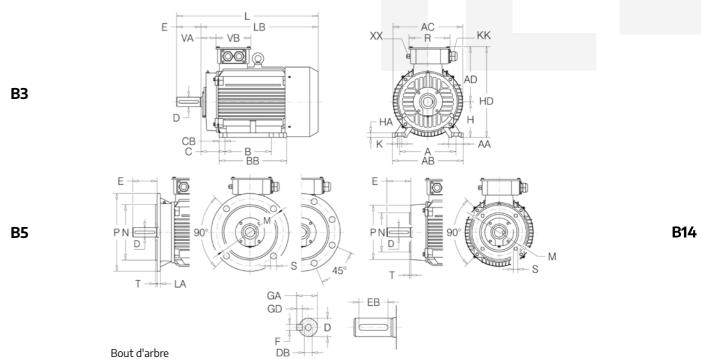

IE4	Moteurs	P_{N}	n _N	T _N	N (400 V)	COSφ		η		Is	$T_{\rm s}$	T_{\max}	J	Poids
	GM	kW	min ⁻¹	Nm	Α		100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
	160 Ma	11	1475	71,22	20,0	0,85	93,3	93,3	91,4	7,7	2,2	2,3	0,0988	146
	160 La	15	1475	97,11	26,8	0,86	93,9	93,9	92,0	7,8	2,2	2,3	0,1160	156
	180 M	18,5	1480	119,37	33,0	0,86	94,2	94,2	92,3	7,8	2,0	2,3	0,1720	181
	180 L	22	1480	141,95	39,1	0,86	94,5	94,5	92,6	7,8	2,0	2,3	0,2050	210
	200 La	30	1480	193,57	53,1	0,86	94,9	94,9	93,0	7,3	2,0	2,3	0,3360	280
	225 S	37	1485	237,93	65,2	0,86	95,2	95,2	93,3	7,4	2,0	2,3	0,5250	373
HZ	225 M	45	1485	289,37	79,2	0,86	95,4	95,4	93,5	7,4	2,0	2,3	0,5980	390
400V 50Hz	250 M	55	1485	353,68	96,5	0,86	95,7	95,7	93,8	7,4	2,2	2,3	0,8420	553
400	280 S	75	1490	480,67	128	0,88	96,0	96,0	94,1	6,9	2,0	2,3	1,4760	655
◁	280 M	90	1490	576,80	154	0,88	96,1	96,1	94,2	6,9	2,0	2,3	1,8060	730
	315 S	110	1490	704,98	185	0,89	96,3	96,3	94,4	7,0	2,0	2,2	4,2460	980
	315 M	132	1490	845,98	222	0,89	96,4	96,4	94,5	7,0	2,0	2,2	4,4530	1031
	315 Mb	160	1490	1025,43	269	0,89	96,6	96,6	94,7	7,1	2,0	2,2	5,1240	1093
	315 Lb	200	1490	1281,78	332	0,90	96,7	96,7	94,8	7,1	2,0	2,2	6,1000	1240
	355 M	250	1490	1602,23	415	0,90	96,7	96,7	94,8	7,1	2,0	2,2	8,4180	1754
	355 L	315	1490	2018,81	522	0,90	96,7	96,7	94,8	7,1	2,0	2,2	10,6140	1960

SÉRIE GM 6 POLÉS IE4 Tab. 6.4.3

IE4	Moteurs	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	J.	Poids
	GM	kW	min-1	Nm	Α		100%	75%	50%	I _N	T _N	T _N	Kg m²	Кд
	160 Ma	7,5	980	73,08	15,0	0,79	91,3	91,3	89,5	7,0	2,0	2,1	0,0950	140
	160 La	11	980	107,19	21,5	0,80	92,3	92,3	90,5	7,2	2,0	2,1	0,1200	160
	180 L	15	985	145,42	28,8	0,81	92,9	92,9	91,0	7,3	2,0	2,1	0,2200	245
	200 La	18,5	985	179,35	35,3	0,81	93,4	93,4	91,5	7,3	2,0	2,1	0,3700	265
	200 Lb	22	985	213,28	41,8	0,81	93,7	93,7	91,8	7,4	2,0	2,1	0,4200	285
	225 M	30	990	289,37	55,4	0,83	94,2	94,2	92,3	6,9	2,0	2,1	0,5500	335
Ŧ	250 M	37	990	356,89	67,3	0,84	94,5	94,5	92,6	7,1	2,0	2,1	0,8500	471
400V 50Hz	280 S	45	990	434,06	80,6	0,85	94,8	94,8	92,9	7,3	2,0	2,0	1,4200	530
400	280 M	55	990	530,52	97,1	0,86	95,1	95,1	93,2	7,3	2,0	2,0	1,7000	670
◁	315 S	75	990	723,43	135,0	0,84	95,4	95,4	93,5	6,6	2,0	2,0	4,2000	960
	315 M	90	990	868,12	160,0	0,85	95,6	95,6	93,7	6,7	2,0	2,0	4,9000	1070
	315 La	110	990	1061,03	195,0	0,85	95,8	95,8	93,9	6,7	2,0	2,0	5,5000	1160
	315 Lb	132	990	1273,24	231,0	0,86	96,0	96,0	94,1	6,8	2,0	2,0	6,5000	1250
	355 Ma	160	990	1543,32	279,0	0,86	96,2	96,2	94,3	6,8	1,8	2,0	10,1000	1780
	355 Mb	200	990	1929,15	345,0	0,87	96,3	96,3	94,4	6,8	1,8	2,0	11,2000	1900
	355 L	250	990	2411,44	430,0	0,87	96,5	96,5	94,6	6,8	1,8	2,0	13,0000	2100

selpee

• 6.5 DONNÉES DIMENSIONNELLES JM 1E4


SÉRIE JM Tab. 6.5.1

Mc	tou	rs JM		Dimer	nsions	princ	ipales						Pieds								Brio	de		
IVIC	rteui	13 JIVI	AC	AD	Н	HD	LB	L	Α	В	C	AB	BB	AA	ВА	НА	K	IM	М	NJ6	Р	LA	Т	S
80		2-4	158	129	80	209	250	290	125	100	50	157	125	35	31	8	10	B5	165	130	200	12	3,5	N°4 12
80		2-4	136	123	80	203	250	290	123	100	30	15/	123	33	31	0	10	B14	100	80	120		3	N°4 M6
90	S	2-4-6	175	140	90	230	275	325	140	100	56	173	125	37	32	10	10	B5	165	130	200	12	3,5	N°4 12
30	L	2-4-0	1/3	140	30	230	300	350	140	125	50	1/3	150	3/	32	10	10	B14	115	95	140		3	N°4 M8
100		2-4-6	198	156	100	256	338	398	160	140	63	196	172	40	39	11	12	B5	215	180	250	13	4	N°4 15
100	-	2-4-0	130	156	100	236	330	336	160	140	65	150	1/2	40	33	"	IZ	B14	130	110	160		3,5	N°4 M8
112	м	2-4-6	219	166	112	278	387	447	190	140	70	227	180	41	43	12	12	B5	215	180	250	14	4	N°4 15
112	IVI	2-4-6	219	100	112	2/8	36/	44/	190	140	70	221	180	41	43	IZ	IZ	B14	130	110	160		3,5	N°4 M8
132	s	2-4-6	258	188	132	320	395	475	216	140	89	262	186	51	46	15	12	B5	265	230	300	14	4	N°4 15
152	М	2-4-6	256	100	152	320	433	513	216	178	69	262	224	31	46	15	IZ	B14	165	130	200		3,5	N°4 M10
460	М	2 , ,	245	2/2	100	(02	499	609	25/	210	100	207	260			10	15	B5	300	250	350	15	5	N°4 19
160	L	2-4-6	315	242	160	402	543	653	254	254	108	304	304	55	50	18	15	B14	215	180	250		4	N°4 M12

SÉRIE JM Tab. 6.5.2

				Во	ut d'a	rbre					Joint	d'arbr	e			Boî	te à bornes			
Mote	urs JM					La	angue	tte	C	ôté bri	de		é lecte côté d	eur B3 opp	Bornier	Presse-é	toupe			
		D	DB	Е	GA	F	GD	EB	Øi	Øe	н	Øi	Øe	Н	N°-Ø	N°-KK	N°-XX	VA	VB	R
80	2-4	19	M6	40	21,5	6	6	30	20	35	7	20	35	7	6-M4	1- M20X1,5	1-Liège	24,5	101	101
90	2-4-6	24	M8	50	27	8	7	40	25	40	7	25	40	7	6-M4	1- M25X1,5	1-Liège	40,5	109	109
100	2-4-6	28	M10	60	31	8	7	50	30	47	7	30	47	7	6-M4	1- M25X1,5	1-Liège	34	109	109
112	2-4-6	28	M10	60	31	8	7	50	30	47	7	30	47	7	6-M5	2-M25X1,5		33,2	117,5	117,5
132	2-4-6	38	M12	80	41	10	8	65	40	62	7	40	62	7	6-M5	2-M32X1,5		41,2	117,5	117,5
160	2-4-6	42 M16 110 45 12 8 90						90	45	62	12	45	62	12	6-M6	2-M40x1,5	1-M16x1,5	75	167	167

• 6.6 DONNÉES DIMENSIONNELLES GM IE4

SÉRIE GM Tab. 6.6.1

Mo	tour	s GM		Dime	ensior	ns princ	cipales						Pieds								Bride	9		
IVIU	teur	SUM	AC	AD	Н	HD	LB	L	Α	В	c	AB	BB	AA	СВ	НА	K	IM	М	NJ6	Р	LA	Т	S
160	M L	2-4-6	335	256	160	416	523 593	633 703	254	210 254	108	320	260 304	65	26	20	15	B5 B14	300 215	250 180	350 250	15	5	N°4 19
180	M L	2-4 4-6	363	271	180	451	616 651	726 761	279	241 279	121	350	311 349	70	35	22	15	B5	300	250	350	15	5	N°4 19
200	L	2-4-6	418	312	200	512	752	862	318	305	133	390	370	70	32	25	18	B5	350	300	400	17	5	N°4 19
225	S	4	465	334	225	559	740	880	356	286	149	432	370	75	46	28	19	B5	400	350	450	20	5	N° 8 19
225	М	2 4-6	465	334	225	559	775	885 915	356	311	149	433	395	75	46	28	19	B5	400	350	450	20	5	N° 8 19
250	М	2-4-6	525	379	250	629	840	980	406	349	168	486	445	80	55	30	24	B5	500	450	550	22	5	N° 8 19
280	S	2 4-6	588	412	280	692	840	980	457	368	190	545	485	85	69	35	24	B5	500	450	550	22	5	N° 8 19
280	М	2 4-6	588	412	280	692	880	1020	457	419	190	545	536	85	69	35	24	B5	500	450	550	22	5	N° 8 19
315	s	2 4-6	620	530	315	845	1060	1200 1230	508	406	216	630	570	120	84	45	28	В5	600	550	660	22	6	N° 8 24
315	М	2 4-6	620	530	315	845	1170 1164	1310 1340	508	457	216	630	680	120	84	45	28	B5	600	550	660	22	6	N° 8 24
315	L	2	620	530	315	845	1170	1310	508	508	216	630	680	120	84	45	28	B5	600	550	660	22	6	N° 8 24
		4-6					1164	1340																
355	М	2 4-6	698	645	355	1000	1360	1500 1570	610	560	254	730	750	120	68	52	28	B5	740	680	800	25	6	N° 8 24
355	L	2 4-6	698	645	355	1000	1360	1500 1570	610	630	254	730	750	120	68	52	28	B5	740	680	800	25	6	N° 8 24

SÉRIE GM Tab. 6.6.2

					В	out d'a	arbre					Joint d	'arbre	2			Boí	ite à bornes			
Мо	teur	s GM					La	ngue	tte	C	ôté bri	de		é lecte côté d		Bornier	Presse-étoi	upe			
			D	DB	Ε	GA	F	GD	EB	Øi	Øe	н	Øi	Øe	Н	N°-Ø	N°-KK	N°-XX	VA	VB	R
160	M L	2-4-6	42	M16	110	45	12	8	90	45	62	8/12	45	62	8/12	6-M6	2-M40x1,5	1-M16x1,5	67	152	185
180	M L	2-4 4-6	48	M16	110	51,5	14	9	100	55	75	8/12	55	75	8/12	6-M6	2-M40x1,5	1-M16x1,5	82	152	185
200	L	2-4-6	55	M20	110	59	16	10	100	60	80	8/12	60	80	8/12	6-M8	2-M50x1,5	1-M16x1,5	92	190	224
225	S	4	60	M20	140	64	18	11	125	65	90	10/12	65	90	10/12	6-M8	2-M50x1,5	1-M16x1,5	95	190	224
225		2	55	M20	110	59	16	10	100	60	80	8/12	60	80	8/12	C MO	2 MEO-4 E	1 MC-4 F	0.5	190	224
225	М	4-6	60	M20	140	64	18	11	125	65	90	10/12	65	90	10/12	6-M8	2-M50x1,5	1-M16x1,5	95	190	224
250	М	2	60	M20	140	64	18	11	125	65	90	10/12	65	90	10/12	6-M10	2 MC2-4 F	1 MC-4 F	88	220	283
250		4-6	65	MZU		69	18	11	125	70	90	10/12	70	90	10/12	6-MIO	2-M63x1,5	1-M16x1,5	88	220	283
280	s	2	65	M20	140	69	18	11	125	70	90	10/12	70	90	10/12	6-M10	2-M63x1.5	1-M16x1.5	96	220	283
200	3	4-6	75	IVIZO	140	79,5	20	12	123	85	110	10/12	85	100	10/12	0-14110	2-1/103.1,3	1-14110X1,5	50	220	203
280	м	2	65	M20	140	69	18	11	125	70	90	10/12	70	90	10/12	6-M10	2-M63x1,5	1-M16x1,5	96	220	283
		4-6	75			79,5	20	12		85	110	10/12	85	100	10/12		,-	,-			
315	s	2	65	M20	140	69	18	11	125	85	110	10/12	85	110	10/12	6-M12/16	2-M63x1,5	1-M16x1,5	117	280	320
		4-6	80		170	85	22	14	140	95	120	10/12	95	120	10/12						
315	м	2	65	M20	140	69	18	11	125	85	110	10/12	85	110	10/12	6-M12/16	2-M63x1,5	1-M16x1.5	117	280	320
		4-6	80		170	85	22	14	140	95	120	10/12	95	120	10/12	,	,	ŕ			
315	L	2	65	M20	140	69	18	11	125	85	110	10/12	85	110	10/12	6-M12/16	2-M63x1,5	1-M16x1,5	117	280	320
		4-6	80		170	85	22	14	140	95	120	10/12	95	120	10/12		,-	, ,			
355	м	2	75	M20	140	79,5	20	12	125	95	120	10/12	95	120	10/12	6-M20	2-M63x1,5	1-M16x1,5	117	330	380
		4-6	100	M24	210	106	28	16	180	110	140	10/12	110	140	10/12		,				
355	L	2	75	M20	140	79,5	20	12	125	95	120	10/12	95	120	10/12	6-M20	2-M63x1,5	1-M16x1,5	117	330	380
		4-6	100	M24	210	106	28	16	180	110	140	10/12	110	140	10/12				"		

Le bon moteur pour les applications industrielles de toutes tailles et puissances.

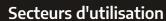
From 56mm

From 0.09kW

seipee.it

MOTEURS ASYNCHRONES TRIPHASÉS IE3 JM-GM

Grandeur	JM	Grandeur	GM
80 ~ 160		160 ~ 450	
Puissance	JM	Puissance	GM
0.75 ~ 18.5 kW		11 ~ 1000 kW	
<u>Polarité</u>	JM	<u>Polarité</u>	GM
2, 4, 6, 8 pôles		2, 4, 6, 8 pôles	



Tab. 6.7.1

• 6.7 DONNÉES ÉLECTRIQUES JM IE3

SÉRIE JM 2 POLÉS IE3

IE3	Moteurs	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	J	Poids
iLJ	JM	kW	min-1	Nm	Α	100%	100%	75%	50%	$\overline{I_N}$	T _N	T _N	Kg m²	Kg
	80 a	0,75	2880	2,49	1,62	0,83	80,7	80,7	79,1	6,8	2,3	2,3	0,0013	10
	80 b	1,1	2880	3,65	2,31	0,83	82,7	82,7	81,0	7,3	2,3	2,3	0,0016	11
	80 c*	1,5	2895	4,95	3,10	0,83	84,2	84,2	82,5	7,5	2,3	2,3	0,0017	13
Z	90 S	1,5	2895	4,95	3,10	0,83	84,2	84,2	82,5	7,6	2,3	2,3	0,0018	14
50H	90 La	2,2	2895	7,26	4,35	0,85	85,9	85,9	84,2	7,8	2,3	2,3	0,0024	18
700	90 Lb*	3	2895	9,90	5,64	0,88	87,1	87,1	85,4	8,1	2,3	2,3	0,0026	19
30/4	100 L	2,2	2895	7,26	4,35	0,85	85,9	86,2	85,4	7,8	2,4	2,7	0,0032	22,5
Δ/Y 230/400V 50Hz	100 La	3	2895	9,90	5,65	0,88	87,1	87,1	85,4	8,1	2,3	2,3	0,0035	24
7	100 Lb*	4	2900	13,2	7,45	0,88	88,1	89,7	89,8	8,0	2,6	3,1	0,0040	26
	112 Ma	4	2900	13,2	7,45	0,88	88,1	88,1	86,3	8,3	2,3	2,3	0,0080	26
	112 Mb*	5,5	2930	17,9	10,1	0,88	89,2	89,2	87,4	8	2,2	2,3	0,0092	36
	112 Mc*	7,5	2930	24,4	13,7	0,88	90,1	90,1	88,3	7,8	2,2	2,3	0,0112	42
	132 Sa	5,5	2930	17,9	10,1	0,88	89,2	89,2	87,4	8,0	2,2	2,3	0,0180	43
	132 Sb	7,5	2930	24,4	13,7	0,88	90,1	90,1	88,3	7,8	2,2	2,3	0,0240	49
	132 Ma	9,25	2940	30,0	16,8	0,88	90,1	90,1	88,3	7,8	2,2	2,3	0,0250	57
400V 50Hz	132 Mb*	11	2945	35,7	19,3	0,90	91,2	91,2	89,4	7,9	2,2	2,3	0,0270	59
700	132 Mc*	15	2945	48,6	25,9	0,91	91,9	91,9	90,1	8,0	2,2	2,3	0,0380	73
D4 40	160 Ma	11	2945	35,7	19,3	0,90	91,2	91,2	89,4	7,9	2,2	2,3	0,0430	85
	160Mb	15	2945	48,6	25,9	0,91	91,9	91,9	90,1	8,0	2,2	2,3	0,0480	98
	160 La	18,5	2940	60,1	32,5	0,89	92,4	92,4	90,6	8,1	2,2	2,3	0,0580	108
	160 Lb*	22	2955	71,1	38,1	0,90	92,70	92,70	90,80	8,2	2,2	2,3	0,0930	118

SÉRIE JM 4 POLÉS IE3 Tab. 6.7.2

IE3	Moteurs	\mathbf{P}_{N}	n _N	T_N	I _{N (400 V)}	COSφ		η		I,	T _s	T _{max}	ı j	Poids
	JM	kW	min ⁻¹	Nm	Α	100%	100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
	80 b	0,75	1420	5,04	1,77	0,74	82,5	82,5	80,9	6,3	2,3	2,3	0,0022	12
	80 c*	1,1	1445	7,27	2,55	0,74	84,1	84,1	82,4	6,5	2,3	2,3	0,0023	18
N	90 S	1,1	1435	7,32	2,52	0,75	84,1	84,1	82,4	6,5	2,3	2,3	0,0025	16
Δ/Y 230/400V 50Hz	90 La	1,5	1435	9,98	3,38	0,75	85,3	85,3	83,6	6,6	2,3	2,3	0,0034	20
000	90 Lb*	1,85	1435	12,3	3,95	0,78	86,7	86,7	85,0	6,7	2,3	2,3	0,0036	20,5
30/4	90 Lc*	2,2	1435	14,6	4,68	0,78	86,7	86,7	85,0	6,9	2,3	2,3	0,0038	21
1/7 2	100 La	2,2	1445	14,5	4,52	0,81	86,7	86,7	85,0	6,9	2,3	2,3	0,0067	26
7	100 Lb	3	1445	19,8	6,02	0,82	87,7	87,7	85,9	7,5	2,3	2,3	0,0081	31
	112 Ma	4	1450	26,3	7,95	0,82	88,6	88,6	86,8	7,6	2,3	2,3	0,0130	38
	112 Mc*	5,5	1460	36,0	11,1	0,80	89,6	89,6	87,8	7,7	2,0	2,3	0,0150	41
	132 Sa	5,5	1465	35,9	10,8	0,82	89,6	89,6	87,8	7,7	2,0	2,3	0,0250	50
Ϋ́	132 Ma	7,5	1465	48,9	14,4	0,83	90,4	90,4	88,6	7,5	2,0	2,3	0,0350	60
V 50	132 Mb	9,25	1460	60,5	18,0	0,82	90,4	90,4	88,6	7,5	2,0	2,3	0,0420	62
400V 50Hz	132 Mc*	11	1465	71,7	21,2	0,82	91,4	91,4	89,6	7,4	2,2	2,3	0,0510	73
⊲	160 Ma	11	1475	71,2	20,4	0,85	91,4	91,4	89,6	7,4	2,2	2,3	0,0755	93
	160 La	15	1475	97,1	27,3	0,86	92,1	92,1	90,3	7,5	2,2	2,3	0,0925	108

SÉRIE JM 6 POLÉS IE3 Tab. 6.7.3

IE3	Moteurs	\mathbf{P}_{N}	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	1	Poids
.23	JM	kW	min-1	Nm	Α	100%	100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
2	90 S	0,75	935	7,66	2,25	0,61	78,9	78,9	77,3	5,8	2,1	2,1	0,0033	15
.230/400V 50Hz	90 La	1,1	945	11,1	2,84	0,69	81,0	81,0	79,4	5,9	2,1	2,1	0,0040	19
Δ/Υ 23(100 La	1,5	945	15,2	3,80	0,69	82,5	82,5	80,9	6,0	2,1	2,1	0,0075	25
₫	112 Ma	2,2	955	22,0	5,31	0,71	84,3	84,3	82,6	6,0	2,1	2,1	0,0170	31
	132 Sa	3	965	29,7	7,12	0,71	85,6	85,6	83,9	6,2	2,0	2,1	0,0310	42
50 Hz	132 Ma	4	965	39,6	9,37	0,71	86,8	86,8	85,1	6,8	2,0	2,1	0,0380	50
400V	132 Mb	5,5	965	54,4	12,0	0,75	88,0	88,0	86,2	7,1	2,0	2,1	0,0480	61
Δ 40	160 Ma	7,5	970	73,8	15,8	0,77	89,1	89,1	87,3	6,7	2,1	2,1	0,0850	84
	160 La	11	970	108,3	22,3	0,79	90,3	90,3	88,5	6,9	2,1	2,1	0,1200	116

SÉRIE JM 8 POLÉS IE3 Tab. 6.7.4

IE3	Moteurs	$\mathbf{P}_{\mathbf{N}}$	n _N	T_N	I _{N (400 V)}	COSφ		η		Is	T _s	T _{max}	ı	Poids
	JM	kW	min ⁻¹	Nm	Α	100%	100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
230 / 50 Hz	100 La	0,75	710	10,1	2,29	0,63	75,0	75,3	72,0	3,5	1,7	2,1	0,00635	17,5
Δ/Y23 400V50	100 Lb	1,1	710	14,8	3,19	0,64	77,7	78,0	74,5	3,5	1,7	2,1	0,00834	19,7
√0, 10,	112 Ma	1,5	710	20,2	4,18	0,65	79,7	80,1	76,6	4,2	1,8	2,1	0,01395	25,6
	132 Sa	2,2	720	29,2	5,88	0,66	81,9	82,3	77,8	5,5	2,0	2,0	0,03213	35,5
50Hz	132 Ma	3	720	39,8	7,74	0,67	83,5	83,8	79,8	5,5	2,0	2,0	0,04060	45
400V	160 Ma	4	720	53,0	10,0	0,68	84,8	85,2	81,2	6,0	1,9	2,1	0,07104	60
Δ 40	160 Mb	5,5	720	72,9	13,5	0,68	86,2	86,6	81,8	6,0	2,0	2,2	0,08623	72
	160 La	7,5	720	99,5	18,0	0,69	87,3	87,7	83,2	6,0	1,9	2,2	0,11308	92

^{*} Correspondance puissance ou puissance/amplitude non normalisée

• 6.8 DONNÉES ÉLECTRIQUES GM IE3

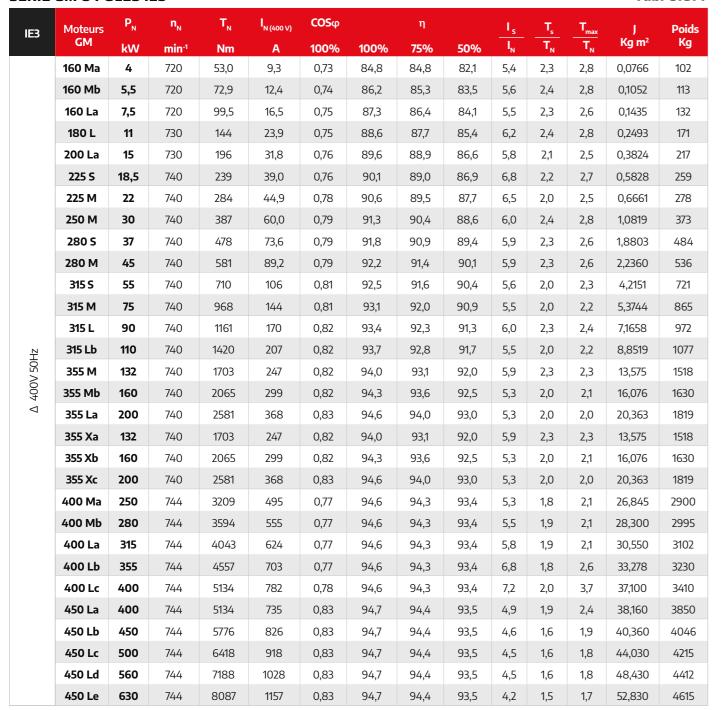
SÉRIE GM 2 POLÉS IE3 Tab. 6.8.1

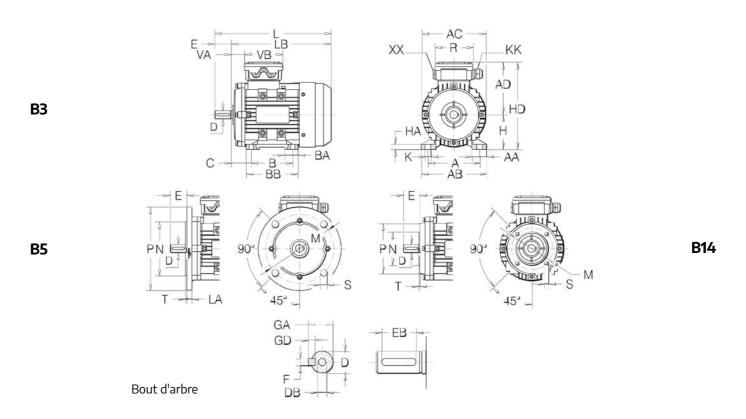
IE3	Moteurs	$\mathbf{P}_{\mathbf{N}}$	n _N	T_{N}	I _{N (400 V)}	COSφ		η		_I _s _		T _{max}		Poids
	GM	kW	min-1	Nm	Α	100%	100%	75%	50%	I _N	T_{N}	T _N	Kg m²	Кд
	160 Ma	11	2945	35,67	19,3	0,90	91,2	91,2	89,4	7,9	2,2	2,3	0,0430	116
	160 Mb	15	2945	48,64	25,9	0,91	91,9	91,9	90,1	8,0	2,2	2,3	0,0480	124
	160 La	18,5	2940	60,09	32,5	0,89	92,4	92,4	90,6	8,1	2,2	2,3	0,0580	138
	180 M	22	2955	71,09	38,1	0,90	92,7	92,7	90,8	8,2	2,2	2,3	0,0980	182
	180 L	30	2960	96,78	52,1	0,89	93,3	93,3	92,4	7,8	2,6	3,0	0,1200	233
	200 La	30	2960	96,78	52,1	0,89	93,3	93,3	91,4	7,5	2,2	2,3	0,1400	250
	200 Lb	37	2960	119,37	62,6	0,91	93,7	93,7	91,8	7,5	2,2	2,3	0,1700	259
	225 M	45	2965	144,93	78,5	0,88	94,0	94,0	92,1	7,6	2,2	2,3	0,2800	324
	250 M	55	2970	176,84	94,6	0,89	94,3	94,3	92,4	7,6	2,2	2,3	0,4000	426
	280 S	75	2975	240,74	127	0,90	94,7	94,7	92,8	6,9	2,0	2,3	0,6500	533
	280 M	90	2975	288,89	154	0,89	95,0	95,0	93,1	7,0	2,0	2,3	0,7500	612
	280 Mb	110	2975	353,08	185	0,90	95,2	95,2	93,3	7,1	2,0	2,2	0,9149	660
400V 50Hz	315 S	110	2975	353,08	185	0,90	95,2	95,2	93,3	7,1	2,0	2,2	1,4500	905
700	315 M	132	2975	423,70	222	0,90	95,4	95,4	93,5	7,1	2,0	2,2	2,1000	995
4	315 L	160	2980	512,71	268	0,90	95,6	95,6	93,7	7,1	2,0	2,2	2,4000	1119
	315 Lb	200	2980	640,89	331	0,91	95,8	95,8	93,9	7,1	2,0	2,2	2,6000	1150
	355 M	250	2980	801,12	409	0,92	95,8	95,8	93,9	7,1	2,0	2,2	3,1000	1948
	355 Mb	280	2980	897,25	459	0,92	95,8	95,8	93,9	7,1	2,0	2,2	3,4000	2150
	355 L	315	2980	1009,41	516	0,92	95,8	95,8	93,9	7,1	2,0	2,2	3,6000	2356
	355 Lc	355	2980	1137,58	583	0,92	95,8	95,8	93,9	6,9	2,0	2,5	13,2000	2650
	355 Xa	355	2980	1137,67	581	0,92	95,8	95,6	93,8	5,7	1,7	2,4	5,4500	2000
	355 Xb	400	2980	1281,88	655	0,92	95,8	95,6	93,8	7,3	2,3	3,0	6,4300	2135
	355 Xc	450	2980	1442,11	737	0,92	95,8	95,6	93,8	6,0	1,9	2,5	6,9900	2215
	400 Ma	400	2985	1279,73	670	0,90	95,8	95,5	93,7	4,9	1,5	2,0	8,0100	2630
	400 Mb	450	2985	1439,70	753	0,90	95,8	95,5	93,7	7,0	2,2	2,8	8,4300	2756
	400 La	500	2985	1599,66	837	0,90	95,8	95,5	93,7	5,6	1,8	2,3	9,4900	2886
	400 Lb	560	2985	1791,62	938	0,90	95,8	95,5	93,7	4,6	1,5	2,0	10,3300	2997

Tab. 6.8.3

SÉRIE GM 4 POLÉS IE3 Tab. 6.8.2 SÉRIE GM 6 POLÉS IE3

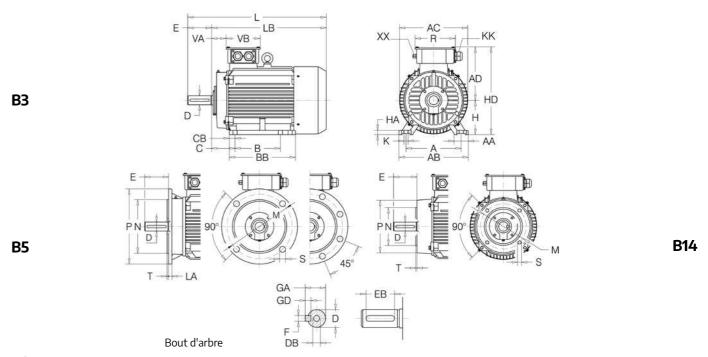
IE3	Moteurs	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		Is	T _s	T _{max}	ı	Poids
IES	GM	kW	min-1	Nm	Α	100%	100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
	160 Ma	11	1475	71,22	20,4	0,85	91,4	91,4	89,6	7,4	2,2	2,3	0,0750	123
	160 La	15	1475	97,11	27,3	0,86	92,1	92,1	90,3	7,5	2,2	2,3	0,0920	141
	180 M	18,5	1470	120,18	34,3	0,84	92,6	92,6	90,7	7,5	2,2	2,3	0,1420	175
	180 L	22	1470	142,91	40,2	0,85	93,0	93,0	91,1	7,7	2,2	2,3	0,1600	209
	180 Lb	30	1475	194,22	53,8	0,86	93,6	93,6	91,7	7,8	2,0	2,3	0,1880	215
	200 L	22	1470	142,91	39,7	0,86	93,0	93,0	91,1	7,8	2,0	2,3	0,1900	245
	200 La	30	1475	194,22	53,8	0,86	93,6	93,6	91,7	7,8	2,2	2,3	0,2650	275
	225 S	37	1485	237,93	66,1	0,86	93,9	93,9	92,0	7,2	2,2	2,3	0,4100	324
	225 M	45	1485	289,37	79,3	0,87	94,2	94,2	92,3	7,3	2,2	2,3	0,4730	359
	225 Mb	55	1485	353,68	96,5	0,87	94,6	94,6	92,7	7,7	2,3	2,6	0,5030	370
	250 M	55	1485	353,68	96,5	0,87	94,6	94,6	92,7	7,4	2,2	2,3	0,6700	433
	280 S	75	1485	482,29	129	0,88	95,0	95,0	93,1	7,4	2,2	2,3	1,1300	568
	280 M	90	1485	578,75	157	0,87	95,2	95,2	93,3	6,7	2,2	2,3	1,4700	649
	315 S	110	1485	707,36	189	0,88	95,4	95,4	93,5	6,9	2,2	2,2	3,1500	935
	315 M	132	1485	848,83	226	0,88	95,6	95,6	93,7	6,9	2,2	2,2	3,6500	1020
	315 La	160	1485	1028,88	274	0,88	95,8	95,8	93,9	6,9	2,2	2,2	4,1500	1090
400V 50Hz	315 Lb	200	1490	1281,78	342	0,88	96,0	96,0	94,1	6,9	2,2	2,2	4,7500	1233
700	355 M	250	1490	1602,23	427	0,88	96,0	96,0	94,1	6,9	2,2	2,2	6,5500	1744
D 4(355 Mb	280	1490	1794,50	478	0,88	96,0	96,0	94,1	6,9	2,2	2,2	7,4000	1850
	355 L	315	1490	2018,81	538	0,88	96,0	96,0	94,1	6,9	2,2	2,2	8,2500	1950
	355 Xa	355	1490	2275,17	602	0,89	96,0	96,0	94,1	6,7	2,2	2,5	9,9500	2200
	355 Xb	400	1488	2567,20	668	0,90	96,0	96,1	95,2	7,1	2,1	2,9	11,94	2256
	355 Xc	450	1489	2886,17	752	0,90	96,0	96,1	95,2	7,5	2,3	3,0	13,62	2400
	400 Ma	355	1492	2272,12	594	0,90	96,0	96,0	94,0	6,4	1,9	2,4	14,5000	2650
	400 Mb	400	1489	2565,48	668	0,90	96,0	96,1	95,2	7,2	1,8	3,1	14,6500	2771
	400 Mc	450	1489	2886,17	752	0,90	96,0	96,1	95,2	7,5	2,0	3,1	16,6400	2891
	400 La	500	1489	3206,85	835	0,90	96,0	96,1	95,2	8,0	2,1	3,1	19,0100	3002
	400 Lb	560	1490	3589,26	936	0,90	96,0	96,1	95,2	8,3	2,2	3,2	22,1800	3213
	400 Lc	630	1490	4037,92	1052	0,90	96,0	96,1	95,2	7,4	2,0	3,0	23,7600	3324
	450 Ma	560	1490	3589,26	935	0,90	96,1	96,2	95,3	6,4	1,8	2,5	19,2200	3498
	450 Mb	630	1490	4037,92	1051	0,90	96,1	96,2	95,3	6,2	1,7	2,4	20,8700	3697
	450 La	710	1490	4550,67	1185	0,90	96,1	96,2	95,3	5,0	1,5	2,1	22,3200	3798
	450 Lb	800	1490	5127,52	1335	0,90	96,1	96,2	95,3	7,4	2,2	2,8	29,1200	4267
	450 Lc	900	1490	5768,46	1502	0,90	96,1	96,2	95,3	6,0	1,7	2,3	32,0300	4475
	450 Ld	1000	1490	6409,40	1669	0,90	96,1	96,2	95,3	5,0	1,5	2,1	34,4500	4642


IES	Moteurs	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		Is	T _s	T _{max}		Poids
IE3	GM	kW	min-1	Nm	Α	100%	100%	75%	50%	$\frac{1}{I_N}$	T _N	T _N	Kg m²	Кд
	160 Ma	7,5	970	73,83	15,8	0,77	89,1	89,1	87,3	6,7	2,1	2,1	0,0950	118
	160 La	11	970	108,29	22,3	0,79	90,3	90,3	88,5	6,9	2,1	2,1	0,1200	138
	180 L	15	980	146,16	29,3	0,81	91,2	91,2	89,4	7,2	2,0	2,1	0,2100	193
	180 Lb*	18,5	980	180,27	35,9	0,81	91,7	91,7	89,9	7,2	2,1	2,1	0,2400	205
	200 La	18,5	980	180,27	35,9	0,81	91,7	91,7	89,9	7,2	2,1	2,1	0,3200	230
	200 Lb	22	980	214,37	41,5	0,83	92,2	92,2	90,4	7,3	2,1	2,1	0,3650	243
	225 M	30	980	292,33	55,5	0,84	92,9	92,9	91,0	7,1	2,0	2,1	0,5500	302
	250 M	37	985	358,70	68,1	0,84	93,3	93,3	91,4	7,1	2,1	2,1	0,8500	390
	280 S	45	985	436,26	81,6	0,85	93,7	93,7	91,8	7,2	2,1	2,0	1,4000	505
	280 M	55	985	533,21	99,3	0,85	94,1	94,1	92,2	7,2	2,1	2,0	1,7000	570
	315 S	75	985	727,10	135	0,85	94,6	94,6	92,7	6,7	2,0	2,0	4,1500	815
	315 M	90	985	872,52	161	0,85	94,9	94,9	93,0	6,7	2,0	2,0	4,8000	955
	315 La	110	985	1066,42	194	0,86	95,1	95,1	93,2	6,7	2,0	2,0	5,4800	1015
	315 Lb	132	985	1279,70	232	0,86	95,4	95,4	93,5	6,7	2,0	2,0	6,1500	1120
Ÿ	315 Lc	160	990	1543,32	281	0,86	95,6	95,6	93,7	6,7	2,0	2,0	6,4000	1250
V 50	355 Ma	160	990	1543,32	281	0,86	95,6	95,6	93,7	6,7	2,0	2,0	6,5500	1591
Δ 400V 50Hz	355 Mb	200	990	1929,15	342	0,88	95,8	95,8	93,9	6,7	2,0	2,0	6,5500	1720
◁	355 L	250	990	2411,44	428	0,88	95,8	95,8	93,9	6,7	2,0	2,0	8,2500	1870
	355 Xa	315	994	3026,19	546	0,87	95,8	95,8	93,9	6,3	2,2	2,3	14,0000	2350
	355 Xb	355	994	3410,46	615	0,87	95,8	95,8	93,9	6,3	2,2	2,3	14,9000	2520
	355 Xc	400	992	3850,81	701	0,86	95,8	95,6	94,6	6,3	1,9	2,4	20,4800	2720
	400 Ma	315	994	3026,19	550	0,86	95,8	95,8	93,8	6,2	2,1	2,2	18,9000	2905
	400 Mb	355	994	3410,46	618	0,87	95,8	95,8	93,8	6,2	2,1	2,2	20,0000	2940
	400 La	400	994	3843,06	709	0,85	95,8	95,6	94,6	7,3	2,4	3,1	23,3200	2991
	400 Lb	450	994	4323,44	798	0,85	95,8	95,6	94,6	6,2	2,0	2,6	24,7200	3071
	400 Lc	500	994	4803,82	886	0,85	95,8	95,6	94,6	7,2	2,4	3,0	27,9800	3256
	400 Ld	560	994	5380,28	993	0,85	95,8	95,6	94,6	7,2	2,4	3,0	31,2400	3438
	450 Ma	500	994	4803,82	865	0,87	95,9	95,7	94,7	6,6	2,2	2,4	35,2200	3890
	450 Mb	560	994	5380,28	969	0,87	95,9	95,7	94,7	6,2	2,0	2,2	40,3600	4066
	450 La	630	994	6052,82	1090	0,87	95,9	95,7	94,7	6,2	2,0	2,2	44,0300	4234
	450 Lb	710	994	6821,43	1228	0,87	95,9	95,7	94,7	6,3	2,1	2,3	48,4300	4434


450 Lc 800 994 7686,12 1384 0,87 95,9 95,7 94,7 6,1 2,0 2,2 56,5000 4797

SÉRIE GM 8 POLÉS IE3 Tab. 6.8.4

SÉRIE JM IE3 Tab. 6.9.1


N/	lotoi	urs JM		Dime	nsior	s prin	cipales	5				ا	Pieds								Brid	e		
1	ote	ui 5 jivi	AC	AD	Н	HD	LB	L	Α	В	c	AB	ВВ	AA	ВА	НА	K	IM	М	NJ6	P	LA	Т	S
80		2-4	157	135	80	215	בר	205	125	100	50	160	120	35	35	11	10.42	B5	165	130	200	10	3,5	N°4 12
80		2-4	15/	135	80	215	255	295	125	100	50	160	130	35	35	"	10x13	B14	100	80	120		3	N°4 M6
90	S L	2-4-6	174	143	90	233	285	335	140	100/125	56	175	155	35	33	12	10x13	B5	165	130	200	12	3,5	N°4 12
30	L	2-4-0	1/4	143	30	233	315	365	140	125	30	1/3	ددا	33	33	IZ	IUXIS	B14	115	95	140		3	N°4 M8
100	L	2-4-6-8	198	153	100	253	340	400	160	140	63	198	176	50	42	15	12x16	B5	215	180	250	13	4	N°4 15
		2,00	150	133	100	233	310	100	100	110	03	150	170	30	12	13	IZXIO	B14	130	110	160		3,5	N°4 M8
112	м	2-4-6-8	220	174	112	286	375	435	190	140	70	220	180	55	42	15	12,45	B5	215	180	250	14	4	N°4 15
112	IVI	2-4-0-0	220	1/4	112	200	3/3	433	190	140	70	220	160	55	42	15	12x15	B14	130	110	160		3,5	N°4 M8
	ς						420	500		140								B5	265	230	300	14	4	N°4 15
132	S M	2-4-6-8	258	193	132	325	445	525	216	178	89	252	224	58	73	15	12x15	B14	165	130	200		3,5	N°4 M10
										210								B5	300	250	350	15	5	N°4 19
160	M L	2-4-6-8	314	235	160	395	530	640	254	254	108	290	293	54	90	17	15x20	B14	215	180	250		4	N°4 M12

SÉRIE JM IE3 Tab. 6.9.2

					Βοι	ıt d'arl	bre				J	oint d	'arbre				В	oîte à bornes	;		
M	1oteı	urs JM					La	inguel	tte	Cá	ôté bri	de		té lect 3 et cô opp.		Bor- nier	Presse-é	toupe			
			D	DB	Е	GA	F	GD	ЕВ	Øi	Øe	н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
80		2-4	19 j6	M6	40	21,5	6	6	32	20	35	7	20	35	7	6-M4	1- M20X1,5	1-Liège	27,5	105	105
90	S L	2-4-6	24 j6	M8	50	27	8	7	40	25	37	7	25	37	7	6-M4	1- M25X1,5	1-Liège	32	105	105
100	L	2-4-6-8	28 j6	M10	60	31	8	7	50	30	42	7	30	42	7	6-M5	1-M25X1.5	1-Liège	27	105	105
112	М	2-4-6-8	28 j6	M10	60	31	8	7	50	30	44	7	30	44	7	6-M5	2-M25X1.5		32	112	119
132	S M	2-4-6-8	38 k6	M12	80	41	10	8	70	40	58	8	40	58	8	6-M5	2-M32X1.5		37	112	119
160	M L	2-4-6-8	42 k6	M16	110	45	12	8	90	45	65	8	45	65	8	6-M6	2-M40X1.5		65	146	146

• 6.10 DONNÉES DIMENSIONNELLES GM 2-4-6-8 POLÉS IE3

SÉRIE GM IE3 Tab. 6.10.1

JLIN	`	JIVI IES																				ıaı	J. C). IU. I
М	oteu	rs GM		Dime	ension	s princi	ipales					P	ieds								Bride			
			AC	AD	Н	HD	LB	L	Α	В	C	AB	BB	AA	CB	HA	K	IM	М	NJ6	Р	LA	Т	S
160	М	2-4-6-8	315	247	160	407	548	658	254	210	108	314	302	65	24	19	14,5	B5	300	250	350	15	5	N°4 18,5
100	L	2-4-0-0	313	24/	100	407	340	036	234	254	100	214	302	0.5	24	15	14,5	B14	215	180	250		4	N°4 M12
180	M L	2 4-6-8	357	268	180	448	611	721	279	241 279	121	345	320	68	20,5	22	14,5	B5	300	250	350	15	5	N°4 18,5
200	L	2-4-6-8	398	307	200	507	671	781	318	305	133	388	353	78	24	25	18,5	B5	350	300	400	17	5	N°4 18,5
225	s	4-8	447	328	225	553	691	831	356	286	149	431	348	75	31	28	18,5	B5	400	350	450	19	5	N° 8 18,5
225	М	2 4-6-8	447	328	225	553	716	826 856	356	311	149	431	373	75	31	28	18,5	B5	400	350	450	19	5	N° 8 18,5
250	М	2-4-6-8	486	367	250	617	797	937	406	349	168	484	445	100	49	33	24	B5	500	450	550	22	5	N° 8 18,5
280	S	2 4-6-8	548	396	280	676	828 847	968 987	457	368	190	546	485	105	69	35	24	B5	500	450	550	22	5	N° 8 18,5
280	М	2 4-6-8	548	396	280	676	879 898	1019 1038	457	419	190	546	536	105	69	35	24	B5	500	450	550	22	5	N° 8 18,5
315	S	2 4-6-8	623	481	315	796	1006 1036	1146 1206	508	406	216	624	511	125	59	45	28	B5	600	550	660	24	6	N° 8 24
315	М	2 4-6-8	623	481	315	796	1116 1146	1256 1316	508	457	216	624	621	125	59	45	28	B5	600	550	660	24	6	N° 8 24
315	L	2 4-6-8	623	481	315	796	1116 1146	1256 1316	508	508	216	624	621	125	59	45	28	B5	600	550	660	24	6	N° 8 24
355	М	2 4-6-8	700	644	355	999	1470	1610 1680	610	560	254	730	850	120	68	50	28	B5	740	680	800	25	6	N° 8 24
355	L	2 4-6-8	700	644	355	999	1470	1610 1680	610	630	254	730	850	120	68	50	28	B5	740	680	800	25	6	N° 8 24
355	X	4-6-8	745	584	355	939	1709	1919	630	800	224	760	1110	140	100	49	35	B5	740	680	800	25	6	N°8 24
400	М	2 4-6-8	850	710	400	1110	1785	1955 1995	686	630	280	806	1090	120	58	45	35	В5	940	880	1000	25	6	N°8 28
400	L	2 4-6-8	850	710	400	1110	1785	1955 1995	686	710	280	806	1090	120	58	45	35	B5	940	880	1000	25	6	N°8 28
450		2 4-6-8	1030	1000	450	1450	2210	2380 2420	800	1000	280	980	1495	225	75	55	42	B5	940 1080	880 1000	1000 1150	25 33	6	N°8 28

SÉRIE GM IE3 Tab. 6.10.2

					Во	ut d'a	rbre					Joint o	d'arbr	е			Boît	e à bornes			
ı	Mot Gl	eurs M					La	ingue	ette	c	ôté bi	ride		é lecte côté e		Bornier	Presse-é	étoupe			
			D	DB	Ε	GΑ	F	GD	EB	Øi	Øe	Н	Øi	Øe	Н	N°-Ø	N°-KK	N°-XX	VA	VB	R
160		2-4-6-8	42	M16	110	45	12	8	90	45	70	8	45	70	8	6-M6	2-M40x1,5	1-M16x1,5	71	158	166
180		2-4-6-8	48	M16	110	51,5	14	9	100	55	80	8	55	80	8	6-M6	2-M40x1,5	1-M16x1,5	83	158	166
200		2-4-6-8	55	M20	110	59	16	10	100	60	85	8	60	85	8	6-M8	2-M50x1,5	1-M16x1,5	88	200	216
225	s	4-8	60	M20	140	64	18	11	125	65	90	10	65	90	10	6-M8	2-M50x1,5	1-M16x1,5	98	200	216
		2	55	M20	110	59	16	10	100	<u></u>		40	C F		40	6.140	2 1 450 4 5	4) 46 4 5	00	200	246
225	М	4-6-8	60		140	64	18	11	125	65	90	10	65	90	10	6-M8	2-M50x1,5	1-M16x1,5	98	200	216
250	м	2	60	M20	140	64	18	11	125	70	95	10	70	95	10	6-M10	2 MC2/4 F	1-M16x1.5	105	224	245
250	IVI	4-6-8	65	IVIZU	140	69	10	11	125	70	35	10	70	35	10	0-14110	2-M63x1,5	1-1/110X1,5	105	224	245
280		2	65	M20	140	69	18	11	125	70	95	10	70	95	10	6-M10	2-M63x1.5	1-M16x1.5	104	224	245
280		4-6-8	75	IVIZO	140	79,5	20	12	الكا	85	110	12	85	110	12	0-14110	2-1/10321,3	1-1/110X1,5	104	224	243
315		2	65	M20	140	69	18	11	125	80	105	10	80	105	10	6-M12/16	2-M63x1,5	1-M16x1.5	97	311	343
313		4-6-8	80	IVIZU	170	85	22	14	140	95	120	12	95	120	12	0-14112/10	2-1/10581,5	1-1/110X1,5	31	311	343
355		2	75	M20	140	79,5	20	12	125	95	120	12	95	120	12	6-M20	2-M63x1.5	1-M16x1.5	120	374	408
333		4-6-8	100	M24	210	106	28	16	180	110	140	12	110	140	12	0-14120	2-1/10381,3	1-1/110X1,5	120	3/4	400
355	X	4-6-8	100	M24	210	106	28	16	180	120	150	12	110	140	12	6-M20	4-M63x1,5	1-M16x1,5	193	366	442
400	м	2	80	M20	170	85	22	14	140	85	110	12	85	110	12	6-M16	4-M63x1.5	1-M16x1.5	147	430	640
	•	4-6-8	110	M24	210	116	28	16	180	130	160	12	130	160	12	0 11110	1 14103/11,3	1 1110/1,5	,	130	0.10
400	L	2	80	M20	170	85	22	14	140	85	110	12	85	110	12	6-M16	4-M63x1,5	1-M16x1,5	147	430	640
	_	4-6-8	110	M24	210	116	28	16	180	130	160	12	130	160	12	55				.55	3.0
450		2	95	M24	170	100	25	14	140	110	130	10/12	110	130	10/12	12-ø14	4-M63x1,5	1-M16x1,5	125	570	780
		4-6-8	130	M24	210	137	32	18	180	140	165	10/13	140	165	10/13						

Nous livrons des solutions gagnantes pour les nouveaux besoins du marché.

Maximum **Personnalisation**

Extrêmement **Concentrez-vous et préparez-vous**

Minimisé **Délai de livraison**

24h / 24h

Soutien technique

Complet & Détaillé **Documentation**

MOTEURS ASYNCHRONES TRIPHASÉS IE2 JM-GM

Grandeur JM

56 ~ 80

Secteurs d'utilisation

Puissance JM

0.12 ~ 0.55 kW

Polarité JM

2, 4, 6, 8 pôles

• 6.11 DONNÉES ÉLECTRIQUES JM IE2

SÉRIE JM 2 POLÉS IE2 Tab. 6.11.1

IE2	Moteurs	Pôl.	\mathbf{P}_{N}	n _N	T_N	l _{N (400} V)	COSφ		η		Is		T _{max}	1	Poids
	JM	r oi.	kW	min-1	Nm	A	100%	100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
ž	56 b	2	0,12	2660	0,43	0,47	0,69	53,6	53,8	50,5	3,5	3,0	3,0	0,00013	3,2
50 F	63 a	2	0,18	2710	0,63	0,57	0,75	60,4	61,2	57,5	4,4	3,1	3,2	0,00015	3,5
>	63 b	2	0,25	2710	0,88	0,71	0,78	64,8	65,5	62,3	4,5	2,8	3,0	0,00017	4,0
/400 V	63 c*	2	0,37	2730	1,29	0,97	0,79	69,5	70,3	66,8	4,4	3,0	3,1	0,00020	4,4
- 230	71 a	2	0,37	2730	1,29	0,97	0,79	69,5	70,3	66,8	5,6	2,4	3,1	0,00031	5,6
<i>≻</i> / ∇	71 b	2	0,55	2760	1,90	1,36	0,79	74,1	74,8	72,1	5,5	2,8	3,2	0,00038	6,3
7	71 c*	2	0,75	2760	2,60	1,71	0,82	77,4	77,9	74,3	5,6	2,8	2,9	0,00047	7,1

SÉRIE JM 4 POLÉS IE2

Tab. 6.11.2

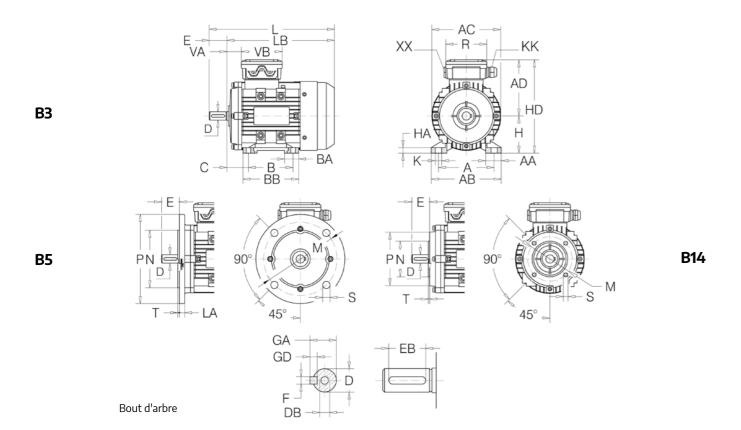
IE2	Moteurs JM	Pôl.	P _N	n _N min ⁻¹	T _N	I _{N (400} v)	COSφ 100%	100%	η 7 5%	50%	I _s	T _s	T _{max}	J Kg m²	Poids Kg
ž	63 a	4	0,12	1350	0,85	0,46	0,64	59,1	59,8	56,4	3,1	2,4	2,8	0,00027	3,9
50 H	63 b	4	0,18	1350	1,27	0,62	0,65	64,7	65,3	62,5	3,3	2,5	2,6	0,00034	4,3
>	63 c	4	0,25	1350	1,77	0,80	0,66	68,5	69,5	66,2	3,4	2,5	2,5	0,00041	5,0
230 / 400	71 a	4	0,25	1350	1,77	0,73	0,72	68,5	69,3	65,6	4,4	2,6	2,7	0,00056	5,4
. 230	71 b	4	0,37	1370	2,58	0,99	0,74	72,7	73,3	69,3	4,6	3,0	3,0	0,00071	6,5
>	71 c*	4	0,55	1380	3,81	1,37	0,75	77,1	77,8	74,3	4,5	2,8	2,9	0,00092	7,2
◁	80 a	4	0,55	1370	3,83	1,37	0,75	77,1	77,8	74,3	5,4	2,3	2,6	0,00145	8,2

SÉRIE JM 6 POLÉS IE2

Tab. 6.11.3

IE2	Moteurs	Pôl.	\mathbf{P}_{N}	n _N	T_N	l _{N (400} V)	COSφ		η		I _s	T _s	T _{max}	ı j	Peso
	JM	roi.	kW	min-1	Nm	A	100%	100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
) Hz	63 b	6	0,12	850	1,35	0,55	0,62	50,6	51,6	48,5	2,2	2,0	2,1	0,00052	5,3
- 50	71 a	6	0,18	880	1,95	0,70	0,66	56,6	57,4	53,2	2,8	2,0	2,4	0,00084	6,0
400 V	71 b	6	0,25	900	2,65	0,84	0,70	61,6	62,4	58,3	3,0	2,1	2,3	0,00097	6,5
230 / 7	71 c*	6	0,37	900	3,93	1,13	0,70	67,6	68,6	64,3	3,1	2,2	2,4	0,00115	7,2
× - 2	80 a	6	0,37	900	3,93	1,13	0,70	67,6	68,6	64,3	4,1	2,1	2,5	0,00160	8,2
\ \ \ \	80 b	6	0,55	900	5,84	1,51	0,72	73,1	73,9	70,1	4,2	2,1	2,4	0,00204	9,9

SÉRIE JM 8 POLÉS IE2


Tab. 6.11.4

IE2	Moteurs	Pôl.	$\mathbf{P}_{\mathbf{N}}$	n _N	T _N	l _{N (400} V)	COSφ		η		I _s		T _{max}	0.1	Poids
	JM		kW	min-1	Nm	Α	100%	100%	75%	50%	I _N	T _N	T_N	Kg m²	Kg
>	71 B	8	0,12	690	1,66	0,74	0,59	39,8	40,6	36,5	2,0	1,9	1,9	0,00084	6,8
230 / 400 ' 50 Hz	80 a	8	0,18	680	2,53	0,93	0,61	45,9	46,7	42,1	3,1	2,0	2,5	0,00202	9,9
230 50 H	80 Ь	8	0,25	680	3,51	1,17	0,61	50,6	51,6	47,5	3,3	2,2	2,5	0,00232	10,9
<u>></u> '	90 S	8	0,37	680	5,20	1,51	0,63	56,1	56,8	53,4	2,9	1,6	1,9	0,00327	14,8
/ \	90 La	8	0,55	680	7,72	1,98	0,65	61,7	62,3	58,4	3,0	1,8	1,9	0,00428	17,2

^{*} Correspondance puissance ou puissance/amplitude non normalisée

• 6.12 DONNÉES DIMENSIONNELLES JM 2-4-6-8 POLÉS IE2

SÉRIE JM IE2 Tab. 6.12.1

Мо	teurs		Dime	nsion	s prind	cipales						Pieds								Brid	le		
JM	- JMD	AC	AD	Н	HD	LB	L	Α	В	C	AB	BB	AA	ВА	HA	К	IM	М	NJ6	P	LA	Т	S
56	2-4-6	112	98	56	154	176	196	90	71	36	110	89	20	20	6	6x9	B5	100	80	120	8	3	N°4 ø7
30	240	112	50	30	154	170	150	30	/ 1	30	110	03	20	20		OAS	B14	65	50	80		2,5	N°4 M5
63	2-4-6	122	110	63	173	200	223	100	80	40	120	103	28	26	8,5	7x10	B5	115	95	140	9	3	N°4 ø9
63	2-4-6	IZZ	110	63	1/3	200	223	100	80	40	120	103	20	20	8,5	/XIU	B14	75	60	90		2,5	N°4 M5
71	2-4-6-8	139	116	71	187	231	261	112	90	45	133	106	28	23	10	7x10	B5	130	110	160	9	3,5	N°4 ø10
																	B14	85	70	105		2,5	N°4 M6
80	2-4-6-8	157	135	80	215	254	294	125	100	50	160	130	35	35	11	10x13	B5	165	130	200	10	3,5	N°4 ø12
80	2-4-0-8	15/	133	60	215	254	234	125	100	50	160	130	33	22	"	IUXIS	B14	100	80	120		3	N°4 M6

SÉRIE JM IE2 Tab. 6.12.2

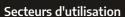
				Во	ut d'ar	rbre					Joint	d'arbr	e			Вс	oîte à bornes			
	oteurs - JMD					La	inguet	tte	C	ôté bri	ide		é lecte côté	eur B3 opp.	Bor- nier	Presse-	étoupe			
		D	DB	Е	GA	F	GD	ЕВ	Øi	Øe	н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
56	2-4-6	9 j6	M4	20	10,2	3	3	12	12	22	5	12	22	5	6-M4	1-M16x1,5	1-M16x1,5	14	88	88
63	2-4-6	11 j6	M4	23	12,5	4	4	16	12	24	7	12	24	7	6-M4	1-M20x1,5	1-M20x1,5	17	95	95
71	2-4-6-8	14 j6	M5	30	16	5	5	22	15	25	7	15	25	7	6-M4	1-M20x1,5	1-M20x1,5	21	94	94
80	2-4-6-8	19 j6	М6	40	21,5	6	6	32	20	35	7	20	35	7	6-M4	1-M20x1,5	1-M20x1,5	27,5	105	105

new energy for your business.

seipee.it

MOTEURS ASYNCHRONES TRIPHASÉS IE1 JM-GM

Grandeur	JM	Grandeur	GM
56 ~ 160		160 ~ 450	
Puissance	JM	Puissance	GM
0.09 ~ 18.5 kW		11 ~ 1000 kW	
<u>Polarité</u>	JM	<u>Polarité</u>	GM
2, 4, 6, 8 pôles		2, 4, 6, 8 pôles	



■ 6.13 MOTEURS IE1

• 6.14 DONNÉES ÉLECTRIQUES JM

Tous les moteurs de cette section du catalogue sont exclusivement destinés à l'exportation en dehors de l'Espace économique européen.

Par conséquent, le transfert des moteurs susmentionnés par Seipee est effectué sous la responsabilité exclusive de l'acheteur, qui assume toutes les obligations légales qui suivent, exemptant complètement Seipee de toute attribution de responsabilité directe ou indirecte à l'égard de la législation en vigueur.

SÉRIE JM 2 POLÉS Tab. 6.14.1

SERI	E JM 2 PC	JLES										Tal	b. 6.14.1
IE1	Moteurs JM	Pôl.	P _N kW	n _N min ⁻¹	T _N Nm	I _{N (400 V)}	COSφ 100%	η 100 %			T _{max}	J Kg m²	Poids Kg
	56 a	2	0,09	2670	0,32	0,34	0,66	58,0	3,4	2,3	2,7	0,00012	3
	56 b	2	0,12	2720	0,42	0,44	0,67	59,0	3,5	2,4	2,8	0,00015	3,6
	63 a	2	0,18	2720	0,63	0,5	0,80	65,0	4,2	2,9	3,1	0,00020	4,5
	63 b	2	0,25	2720	0,88	0,66	0,81	68,0	4,5	2,8	2,9	0,00028	4,9
	63 c*	2	0,37	2740	1,29	0,94	0,81	70,0	4,1	2,9	3,0	0,00033	5,3
	71 a	2	0,37	2740	1,29	0,94	0,81	70,0	5,4	2.9	3,1	0,00042	6
	71 b	2	0,55	2740	1,92	1,33	0,82	73,0	5,2	2,9	3,0	0,00051	6,3
740	71 c*	2	0,75	2840	2,52	1,81	0,83	72,1	5,5	2,7	2,8	0,00063	6,6
Δ/Y 230/400V 50Hz	80 a	2	0,75	2840	2,52	1,81	0,83	72,1	5,6	2,8	2,9	0,00078	8,7
)/40(80 b	2	1,1	2840	3,70	2,52	0,84	75,0	5,7	2,8	3,0	0,00103	9,2
Y 230	80 c*	2	1,5	2840	5,04	3,34	0,84	77,2	5,8	3,0	3,1	0,00127	10,5
ব	90 S	2	1,5	2840	5,04	3,34	0,84	77,2	5,9	3,0	3,2	0,00129	12
	90 La	2	2,2	2840	7,40	4,69	0,85	79,2	6,1	2,9	3,1	0,00160	15
	90 Lb*	2	3	2860	10,0	6,11	0,87	81,5	5,8	3,2	3,3	0,00210	15,5
	100 La	2	3	2860	10,0	6,11	0,87	81,5	6,4	2,6	3,0	0,00240	20
	100 Lb*	2	4	2880	13,3	7,9	0,88	83,1	6,1	2,5	2,8	0,00285	21,5
	112Ma	2	4	2880	13,3	7,9	0,88	83,1	6,6	2,3	2,9	0,00540	26
	112 Mb*	2	5,5	2900	18,1	10,7	0,88	84,7	6,5	2,5	2,9	0,00572	32
	112 Mc	2	7,5	2900	24,7	14,3	0,88	86	7,0	2,2	2,3	0,00985	34
	132 Sa	2	5,5	2900	18,1	10,7	0,88	84,7	6,4	2,4	3,1	0,0120	38,5
	132 Sb	2	7,5	2900	24,7	14,3	0,88	86,0	6,1	2,3	2,8	0,0140	43
Z	132 Ma*	2	9,25	2900	30,5	17,3	0,89	86,9	7,5	2,7	3,0	0,0180	53
400V 50Hz	132 Mb*	2	11	2930	35,9	20,4	0,89	87,6	6,0	1,9	2,4	0,0240	57
000	132 Mc*	2	15	2930	48,9	27,4	0,89	88,7	5,9	2,1	2,3	0,0270	62
4	160 Ma	2	11	2930	35,9	20,4	0,89	87,6	7,0	2,2	2,4	0,0340	73
	160 Mb	2	15	2930	48,9	27,4	0,89	88,7	6,9	1,9	2,3	0,0400	82
	160 La	2	18,5	2930	60,3	33,2	0,90	89,3	6,8	2,1	2,4	0,0450	90
	160 Lb*	2	22	2940	71,5	39,2	0,90	89,9	6,7	2,0	2,3	0,0490	96

SÉRIE JM 6 POLÉS SÉRIE JM 4 POLÉS Tab. 6.14.2

IE1	Moteurs	Pôl.	P _N	n _N	T _N	I _{N (400 V)}	COSφ	η	I _s	T _s	T _{max}	, J	Poids
	JM	1 01.	kW	min ⁻¹	Nm	Α	100%	100%	I _N	T _N	T_{N}	Kg m²	Kg
	56 b	4	0,09	1325	0,65	0,45	0,59	49,0	2,8	2,2	2,3	0,00018	3,6
	56 c*	4	0,12	1310	0,87	0,42	0,72	57,0	2,8	2,2	2,3	0,00020	4,2
	63 a	4	0,12	1310	0,87	0,42	0,72	57,0	2,7	2,3	2,4	0,00022	4,5
	63 b	4	0,18	1310	1,31	0,59	0,73	60,0	2,9	2,3	2,3	0,00030	4,9
	63 c*	4	0,25	1350	1,77	0,75	0,74	65,0	2,7	2,4	2,4	0,00034	5,7
	71 a	4	0,25	1330	1,79	0,75	0,74	65,0	3,5	2,8	2,8	0,00044	6
	71 b	4	0,37	1330	2,66	1,06	0,75	67,0	3,4	2,5	2,6	0,00064	6,3
Z	71 c*	4	0,55	1340	3,92	1,49	0,75	71,1	3,6	2,4	2,4	0,00079	7,3
50H	80 a	4	0,55	1390	3,78	1,49	0,75	71,1	3,8	2,3	2,4	0,00103	8,1
<u>\</u>	80 b	4	0,75	1390	5,15	1,98	0,76	72,1	4,0	2,2	2,3	0,00143	9,2
0/40	80 c*	4	1,1	1390	7,56	2,75	0,77	75,0	4,0	2,3	2,3	0,00193	10,5
Δ/Y 230/400V - 50Hz	90 S	4	1,1	1390	7,56	2,75	0,77	75,0	5,5	2,5	2,8	0,00230	13
₫	90 La	4	1,5	1390	10,3	3,55	0,79	77,2	5,4	2,3	2,6	0,00270	14,5
	90 Lb*	4	1,85	1390	12,7	4,40	0,80	78,2	6,8	2,3	3,1	0,00410	15,5
	90 Lc*	4	2,2	1390	15,1	4,90	0,82	79,2	5,0	2,7	2,9	0,00470	16
	100 La	4	2,2	1390	15,1	4,92	0,81	79,2	6,4	2,3	2,5	0,00540	18,8
	100 Lb	4	3	1410	20,3	6,48	0,82	81,5	5,8	2,2	2,6	0,00670	21,5
	100 Lc*	4	4	1410	27,1	8,47	0,82	83,1	5,7	2,3	2,6	0,00810	25
	112 Ma	4	4	1410	27,1	8,47	0,82	83,1	5,9	2,2	2,7	0,00950	28
	112 Mc*	4	5,5	1435	36,6	11,3	0,83	84,7	6,0	2,6	2,8	0,0115	32
	132 Sa	4	5,5	1435	36,6	11,3	0,83	84,7	6,4	2,2	2,8	0,0214	42
N	132 Ma	4	7,5	1440	49,7	15,0	0,84	86,0	6,7	2,3	2,7	0,0296	48
400V - 50Hz	132 Mb*	4	9,25	1445	61,1	17,9	0,86	86,9	7,3	2,7	3,3	0,0395	59
- NO	132 Mc*	4	11	1440	72,9	21,6	0,84	87,6	7,2	2,8	3,2	0,0496	69
	160 Ma	4	11	1440	72,9	21,6	0,84	87,6	6,7	2,2	2,5	0,0747	83
◁	160 La	4	15	1460	98,1	28,7	0,85	88,7	6,4	2,0	2,6	0,0918	92
	160 Lb*	4	18,5	1460	121	34,8	0,86	89,3	6,3	2,0	2,5	0,1080	98

IE1	Moteurs	D2I	P _N	n _N	T _N	I _{N (400 V)}	COSφ	η	I _s	T _s	T _{max}	J	Poids
161	JM	Pôl.	kW	min-1	Nm	Α	100%	100%	I _N	T _N	T _N	Kg m²	Kg
	63 b	6	0,12	840	1,36	0,63	0,60	46,0	3,0	2,0	2,1	0,00035	5,5
	71 a	6	0,18	850	2,02	0,70	0,66	56,0	2,5	2,6	2,6	0,00090	6,2
	71 b	6	0,25	850	2,81	0,90	0,68	59,0	2,7	2,5	2,5	0,00120	6,6
50 Hz	71 c*	6	0,30	860	3,33	0,94	0,69	60,0	2,5	2,4	2,4	0,00130	6,9
1	80 a	6	0,37	885	3,99	1,23	0,70	62,0	3,0	2,0	2,1	0,00140	8,2
00 \	80 b	6	0,55	885	5,93	1,70	0,72	65,0	3,2	2,1	2,2	0,00150	9,2
230/400 V	80 c*	6	0,75	910	7,87	2,15	0,72	70,0	3,1	2,1	2,2	0,00165	10
1	90 S	6	0,75	910	7,87	2,15	0,72	70,0	3,5	1,9	2,2	0,00290	13
7/△	90 La	6	1,1	910	11,5	2,98	0,73	72,9	3,7	2,0	2,3	0,00350	14
	90 Lb*	6	1,5	920	15,6	3,84	0,75	75,2	3,6	1,9	2,2	0,00440	15,6
	100 La	6	1,5	920	15,6	3,84	0,75	75,2	4,6	2,1	2,3	0,00690	21
	112 Ma	6	2,2	935	22,5	5,38	0,76	77,7	4,8	2,0	2,2	0,0140	27,5
	132 Sa	6	3	960	29,8	7,15	0,76	79,7	5,6	2,1	2,2	0,0286	36
Z	132 Ma	6	4	960	39,8	9,33	0,76	81,4	5,7	2,3	2,4	0,0357	43
- 50Hz	132 Mb	6	5,5	960	54,7	12,4	0,77	83,1	5,8	2,4	2,5	0,0449	54
400V	160 Ma	6	7,5	970	73,8	16,6	0,77	84,7	6,4	2,1	2,4	0,0810	83
4	160 La	6	11	970	108,0	23,6	0,78	86,4	6,5	2,2	2,6	0,1160	94
	160 Lb*	6	15	970	148,0	30,5	0,81	87,7	6,6	2,3	2,5	0,1250	105

SÉRIE JM 8 POLÉS Tab. 6.14.4

IE1	Moteurs	Pôl.	\mathbf{P}_{N}	n _N	T _N	I _{N (400 V)}	COSφ	η	I _s	T _s	T _{max}	1	Poids
	JM	Poi.	kW	min-1	Nm	Α	100%	100%	I _N	T _N	T_{N}	Kg m²	Kg
	71 a	8	0,09	645	1,33	0,42	0,60	51,0	1,8	1,9	1,9	0,00120	6,0
Z	71 b	8	0,12	645	1,78	0,55	0,60	51,0	1,9	1,9	1,9	0,00130	6,3
50 Hz	80 a	8	0,18	645	2,66	0,84	0,61	51,0	2,0	1,9	1,9	0,00200	8,6
>	80 b	8	0,25	645	3,70	1,1	0,61	54,0	1,9	1,9	1,9	0,00240	9,5
230/400	90 s	8	0,37	670	5,27	1,41	0,61	62,0	2,8	1,9	2,1	0,00350	13
	90 la	8	0,55	670	7,84	2,07	0,61	63,0	2,9	2,0	2,2	0,00430	14
∠ / ✓	100 La	8	0,75	680	10,5	2,28	0,67	71,0	3,3	2,0	2,1	0,00980	22
<1	100 Lb	8	1,1	680	15,4	3,15	0,69	73,0	3,5	1,8	2,0	0,0112	24
	112 Ma	8	1,5	690	20,8	4,18	0,69	75,0	4,1	2,0	2,1	0,0200	28
2	132 Sa	8	2,2	705	29,8	5,73	0,71	78,0	4,9	2,1	2,2	0,0360	45
50Hz	132 Ma	8	3	705	40,6	7,51	0,73	79,0	4,8	2,2	2,3	0,0500	55
1	160 Ma	8	4	720	53,1	9,76	0,73	81,0	5,4	1,9	2,0	0,0950	85
A 400V	160 Mb	8	5,5	720	72,9	12,9	0,74	83,0	5,2	2,0	2,2	0,1090	89
7	160 La	8	7,5	720	99,5	16,9	0,75	85,5	5,6	2,0	2,1	0,1380	94

^{*} Correspondance puissance ou puissance/amplitude non normalisée

• 6.15 DONNÉES ÉLECTRIQUES GM

SÉRIE GM 2 POLÉS Tab. 6.15.1

IE1	Moteurs	Pôl.	P _N	n _N	T _N	I _{N (400 V)}	COSφ	η	I _s	T _s	T _{max}	J	Poid:
	GM	PUI.	kW	min-1	Nm	Α	100%	100%	I _N	T _N	T _N	Kg m²	Kg
	160 Ma	2	11	2930	35,9	20,4	0,89	87,6	7,0	2,2	2,4	0,0340	110
	160 Mb	2	15	2930	48,9	27,4	0,89	88,7	7,3	2,1	2,5	0,0400	120
	160 La	2	18,5	2930	60,3	33,2	0,90	89,3	7,1	2,2	2,4	0,0450	135
	180 Ma	2	22	2940	71,5	39,2	0,90	89,9	7,0	2,1	2,3	0,0750	165
	180 Lb	2	30	2950	97,1	53	0,90	90,7	7,5	2,0	2,3	0,0820	182
	200 La	2	30	2950	97,1	53	0,90	90,7	6,9	2,0	2,5	0,1240	218
	200 Lb	2	37	2950	120	65,1	0,90	91,2	7,2	2,0	2,4	0,1390	230
	225 M	2	45	2960	145	78,7	0,90	91,7	7,3	2,2	2,4	0,2330	280
	225 Mb	2	55	2965	177	95,8	0,90	92,1	7,6	2,0	2,3	0,2460	321
	250 M	2	55	2965	177	95,8	0,90	92,1	7,1	2,0	2,3	0,3120	365
	250 Mb	2	75	2970	241	130	0,90	92,7	7,0	2,0	2,3	0,4350	425
	280 S	2	75	2970	241	130	0,90	92,7	7,3	2,2	2,4	0,5790	495
	280 M	2	90	2970	289	153	0,91	93,0	7,0	2,0	2,3	0,6750	531
	280 Mb	2	110	2975	353	187	0,91	93,3	7,1	1,8	2,2	0,7500	600
	280 Md*	2	132	2975	424	224	0,91	93,5	7,0	2,1	2,4	0,9150	705
ı	315 S	2	110	2975	353	187	0,91	93,3	7,1	1,9	2,3	1,1800	840
-	315 Ma	2	132	2975	424	224	0,91	93,5	6,6	1,8	2,3	1,8200	980
	315 Mb	2	160	2975	514	268	0,92	93,8	6,7	1,9	2,3	2,0800	1055
)	315 La	2	200	2975	642	334	0,92	94,0	7,0	1,8	2,2	2,3800	1110
	315 Lb	2	250	2980	801	417	0,92	94,0	7,1	1,6	2,2	2,6800	1200
1	355 M	2	250	2980	801	417	0,92	94,0	6,6	1,8	2,3	3,0000	1900
	355 Mb	2	280	2980	897	468	0,92	94,0	6,8	1,9	2,3	3,3000	2200
	355 L	2	315	2980	1009	526	0,92	94,0	6,9	1,9	2,3	3,5000	2300
	355 Xa	2	355	2975	1139	585	0,93	94,0	6,6	1,7	2,8	12,520	2604
	355 Xb	2	400	2982	1281	654	0,92	96,0	6,8	1,8	2,7	13,260	3035
	355 Xc	2	450	2982	1441	735	0,92	96,1	6,4	1,7	2,7	14,210	3122
	400 Ma	2	400	2982	1281	654	0,92	96,0	6,9	1,6	2,8	14,950	3088
	400 Mb	2	450	2982	1441	735	0,92	96,1	7,3	1,7	2,7	15,670	3200
	400 La	2	500	2982	1601	815	0,92	96,3	6,1	1,7	2,8	20,070	3540
	400 Lb	2	560	2982	1793	912	0,92	96,3	5,5	1,8	2,7	22,300	3750
	400 Lc	2	630	2982	2017	1015	0,93	96,3	7,3	1,8	2,6	25,500	3990
	450 Ma	2	560	2986	1791	901	0,93	96,5	6,7	1,6	2,5	38,150	3800
	450 Mb	2	630	2984	2016	1012	0,93	96,6	6,6	1,6	2,5	43,300	4100
	450 La	2	710	2988	2269	1129	0,94	96,6	6,8	1,7	2,6	48,600	4540
	450 Lb	2	800	2986	2558	1270	0,94	96,7	6,7	1,8	2,7	52,900	4720
	450 Lc	2	900	2985	2879	1429	0,94	96,7	6,8	1,7	2,6	57,100	4935

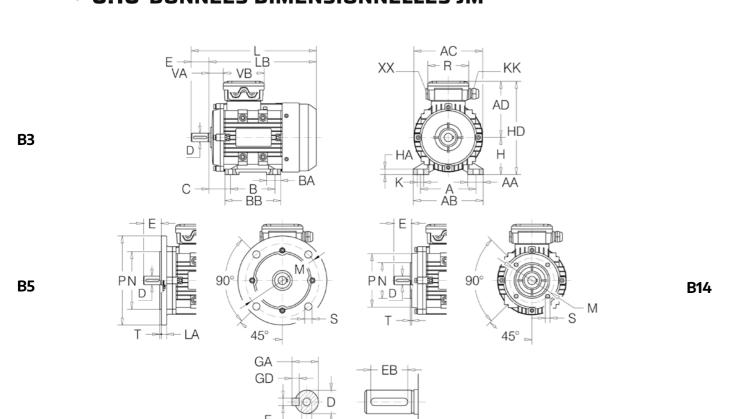
SÉRIE GM 4 POLÉS

Tab. 6.15.2

					_		coc						
IE1	Moteurs GM	Pôl.	P_{N}	n _N	T _N	N (400 V)	COSφ	η	Is		T _{max}	J Va.m²	Poids
	GIVI		kW	min ⁻¹	Nm	Α	100%	100%	I _N	T _N	T _N	Kg m²	Кд
	160 Ma	4	11	1440	72,9	21,6	0,84	87,6	6,7	2,2	2,5	0,0747	110
	160 La	4	15	1460	98,1	28,7	0,85	88,7	6,4	2,0	2,6	0,0918	132
	160 Lb	4	18,5	1460	121,0	34,8	0,86	89,3	6,3	2,0	2,5	0,1080	135
	180 Ma	4	18,5	1460	121	34,8	0,86	89,3	6,7	2,1	2,8	0,1390	164
	180 L	4	22	1470	143	41,1	0,86	89,9	7,5	2,2	3,0	0,1580	182
	180 Lb	4	30	1470	195	55,5	0,86	90,7	7,1	2,3	2,4	0,2020	185
	200 La	4	30	1470	195	55,5	0,86	90,7	6,6	2,3	2,5	0,2620	244
	200 Lb	4	37	1470	240	67,3	0,87	91,2	7,2	2,3	2,6	0,2680	250
	225 S	4	37	1470	240	67,3	0,87	91,2	7,2	2,3	2,6	0,4060	258
	225 M	4	45	1475	291	81,4	0,87	91,7	7,0	2,2	2,4	0,4690	290
	250 M	4	55	1475	356	99,1	0,87	92,1	7,1	2,3	2,6	0,6600	388
	280 S	4	75	1480	484	134	0,87	92,7	6,6	2,3	2,5	1,1200	510
	280 M	4	90	1480	581	161	0,87	93,0	6,2	2,2	2,4	1,4600	606
	315 S	4	110	1480	710	193	0,88	93,3	7,0	2,2	2,4	3,1100	910
	315 Ma	4	132	1480	852	232	0,88	93,5	6,8	2,2	2,5	3,6200	985
Ŋ	315 L	4	160	1480	1032	277	0,89	93,8	6,6	2,1	2,4	4,1300	1056
50 Hz	315 Lb	4	200	1480	1290	345	0,89	94,0	6,9	2,2	2,4	4,7300	1128
1	315 Lc*	4	250	1490	1602	427	0,90	94,0	6,9	2,1	2,2	5,3500	1245
400V	355 M	4	250	1490	1602	427	0,90	94,0	6,5	2,2	2,4	6,5000	1700
- ⊲	355 L	4	315	1490	2019	537	0,90	94,0	6,2	2,1	2,3	8,2000	1900
7	355 Xa	4	355	1490	2275	604	0,90	94,0	6,5	2,1	2,7	9,5000	2150
	355 Xb	4	400	1492	2560	668	0,90	96,0	6,1	2,0	2,6	10,600	2300
	355 Xc	4	450	1492	2880	751	0,90	96,1	6,3	1,8	2,5	11,500	2460
	355 Xd	4	500	1490	3204	862	0,88	95,1	7,8	2,2	2,7	16,240	2500
	400 Ma	4	355	1492	2272	597	0,91	94,0	6,2	1,7	2,5	13,300	2600
	400 Mb	4	400	1492	2560	668	0,90	96,0	6,4	1,8	2,6	14,950	2790
	400 Mc	4	450	1492	2880	751	0,90	96,1	6,3	1,8	2,7	15,630	3050
	400 La	4	500	1492	3200	832	0,90	96,4	6,2	1,9	2,6	18,410	3132
	400 Lb	4	560	1492	3584	932	0,90	96,4	6,6	2,0	2,5	19,620	3340
	400 Lc	4	630	1492	4032	1037	0,91	96,4	6,4	1,9	2,4	21,330	3580
	450 Ma	4	560	1492	3584	922	0,91	96,3	6,4	1,3	2,7	35,100	3584
	450 Mb	4	630	1492	4032	1037	0,91	96,4	6,9	1,5	2,5	39,500	3870
	450 La	4	710	1492	4544	1168	0,91	96,4	6,2	1,3	2,6	41,000	4360
	450 Lb	4	800	1492	5120	1285	0,93	96,6	6,9	1,5	2,3	45,600	4650
	450 Lc	4	900	1492	5760	1462	0,92	96,6	6,1	1,6	2,3	49,500	4732
	450 Ld	4	1000	1492	6400	1669	0,92	94,0	7,0	1,1	2,0	50,600	5700

SÉRIE GM 6 POLÉS Tab. 6.15.3

IE1	Moteurs	D ^1	P _N	n _N	T _N	I _{N (400 V)}	COSφ	η	I _s	T _s	T _{max}	1	Poids
IEI	GM	Pôl.	kW	min-1	Nm	Α	100%	100%	I _N	T _N	T _N	Kg m²	Kg
	160 Ma	6	7,5	970	73,8	16,6	0,77	84,7	6,4	2,1	2,4	0,0747	115
	160 La	6	11	970	108,3	23,6	0,78	86,4	6,5	2,2	2,6	0,0918	130
	180 L	6	15	970	148	30,5	0,81	87,7	6,9	2,1	2,2	0,1580	178
	200 La	6	18,5	980	180	37,2	0,81	88,6	6,7	2,1	2,2	0,2620	210
	200 Lb	6	22	980	214	42,9	0,83	89,2	6,6	2,1	2,2	0,2800	227
	225 M	6	30	980	292	57,1	0,84	90,2	6,7	2,0	2,1	0,4690	265
	250 M	6	37	980	361	68,4	0,86	90,8	6,9	2,1	2,2	0,6600	370
	280 S	6	45	980	438	82,6	0,86	91,4	6,5	2,1	2,2	1,1200	490
	280 M	6	55	980	536	100,0	0,86	91,9	6,6	2,0	2,1	1,4600	540
	315 S	6	75	985	727	136	0,86	92,6	6,8	2,0	2,3	3,1100	800
	315 Ma	6	90	985	873	163	0,86	92,9	6,7	2,1	2,2	3,6200	920
	315 Mb	6	110	985	1066	198	0,86	93,3	6,6	2,0	2,1	4,1300	960
	315 L	6	132	985	1280	234	0,87	93,5	6,4	2,1	2,3	4,7300	1050
50 Hz	315 Lc	6	160	985	1551	280	0,88	93,8	6,2	2,0	2,4	5,1500	1170
1	355 Ma	6	160	985	1551	280	0,88	93,8	6,1	2,0	2,4	6,5000	1550
400 V	355 Mb	6	200	985	1939	349	0,88	94,0	6,7	1,9	2,3	6,8000	1600
- 40	355 L	6	250	985	2424	436	0,88	94,0	6,7	1,9	2,1	8,2000	1700
⊲	355 Xa	6	315	994	3026	550	0,88	94,0	5,9	1,9	2,5	13,500	2310
	355 Xb	6	355	994	3410	620	0,88	94,0	5,8	2,0	2,4	14,300	2490
	355 Xc	6	400	990	3858	714	0,86	94,0	6,5	1,6	2,4	18,860	2980
	400 Ma	6	315	994	3026	552	0,88	94,0	5,7	1,8	2,3	18,210	3000
	400 Mb	6	355	994	3410	621	0,88	94,0	5,6	1,9	2,3	19,320	3410
	400 La	6	400	994	3843	700	0,86	95,9	6,1	1,9	2,4	21,860	3560
	400 Lb	6	450	994	4323	788	0,86	95,9	6,6	2,0	2,3	22,310	3840
	400 Lc	6	500	994	4803	873	0,86	96,1	6,2	1,8	2,2	23,520	3870
	400 Ld	6	560	994	5380	978	0,86	96,1	5,9	1,9	2,2	24,460	4140
	450 Ma	6	500	994	4803	874	0,86	96,0	6,2	1,6	2,3	49,300	3890
	450 Mb	6	560	994	5380	978	0,86	96,1	6,1	1,6	2,3	54,100	4200
	450 La	6	630	994	6052	1100	0,86	96,1	6,1	1,7	2,3	60,600	4620
	450 Lb	6	710	994	6821	1243	0,86	95,9	5,9	1,7	2,3	67,900	5080
	450 Lc	6	800	994	7686	1375	0,87	96,5	5,8	1,6	2,2	67,900	5080


SÉRIE GM 8 POLÉS Tab. 6.15.4

					-		COC						
IE1	Moteurs GM	Pôl.	P _N	n _N	T _N	I _{N (400 V)}	COSφ	η			T _{max}	J Kg m²	Poids Kg
			kW	min ⁻¹	Nm	Α	100%	100%	I _N	T _N	T _N		
	160 Ma	8	4	720	53,1	9,76	0,73	81,0	5,6	2,0	2,2	0,0753	105
	160 La	8	5,5	720	72,9	12,9	0,74	83,0	5,8	2,1	2,3	0,0931	115
	160 La	8	7,5	720	99,5	16,9	0,75	85,5	5,7	2,0	2,1	0,1260	145
	180 Lb	8	11	730	144	23,8	0,76	87,5	5,7	1,9	2,2	0,2030	160
	200 La	8	15	730	196	32,4	0,76	88,0	6,0	2,0	2,2	0,3390	228
	225 S	8	18,5	730	242	39	0,76	90,0	6,2	1,9	2,2	0,4910	242
	225 M	8	22	730	288	45	0,78	90,5	6,4	2,0	2,0	0,5470	265
	250 M	8	30	735	390	60,2	0,79	91,0	6,1	1,9	2,1	0,8340	368
	280 S	8	37	735	481	73,9	0,79	91,5	6,5	1,9	2,3	1,6500	472
	280 M	8	45	735	585	89,4	0,79	92,0	6,4	2,0	2,2	1,9300	538
	315 S	8	55	735	715	106	0,81	92,8	6,5	1,8	2,1	4,7900	900
	315 Ma	8	75	735	974	144	0,81	93,0	6,5	1,9	2,2	5,5800	1000
	315 Mb	8	90	735	1169	169	0,82	93,8	6,3	1,9	2,3	6,3700	1055
7	315 L	8	110	735	1429	206	0,82	94,0	6,2	1,8	2,2	7,2300	1118
50 Hz	315 Lc	8	132	740	1703	254	0,82	91,5	6,4	1,8	2,0	7,4300	1160
>	355 Ma	8	132	740	1703	248	0,82	93,7	6,4	1,7	2,1	7,9000	2000
400 V	355 Mb	8	160	740	2065	299	0,82	94,2	6,4	1,8	2,2	10,300	2150
- ⊲	355 L	8	200	740	2581	368	0,83	94,5	6,2	1,7	2,1	12,300	2250
7	355 Xa	8	250	745	3204	451	0,84	95,3	6,1	1,7	2,3	14,530	2460
	355 Xb	8	315	745	4038	560	0,85	95,5	6,0	1,7	2,4	15,390	2750
	400 Ma	8	250	745	3204	451	0,84	95,3	6,3	1,8	2,5	25,600	2914
	400 Mb	8	280	745	3589	505	0,84	95,3	5,9	1,7	2,3	26,500	3170
	400 La	8	315	745	4038	560	0,85	95,5	6,1	1,8	2,4	27,900	3392
	400 Lb	8	355	745	4550	631	0,85	95,6	5,8	1,7	2,3	29,800	3592
	400 Lc	8	400	745	5127	710	0,85	95,6	6,4	1,6	2,4	31,300	3949
	450 Ma	8	315	746	4032	581	0,82	95,4	6,0	1,8	2,5	59,500	3840
	450 Mb	8	355	745	4550	654	0,82	95,5	5,7	1,7	2,4	64,500	4090
	450 La	8	400	745	5127	727	0,83	95,7	5,5	1,6	2,3	69,400	4350
	450 Lb	8	450	745	5768	818	0,83	95,7	5,4	1,6	2,2	75,200	4660
	450 Lc	8	500	745	6409	909	0,83	95,7	5,7	1,7	2,2	79,300	4870
	450 Ld	8	560	745	7178	1053	0,83	92,5	6,0	1,6	2,4	80,200	5550
	450 Le	8	630	745	8075	1184	0,83	92,5	6,5	1,8	2,3	81,600	5650

Bout d'arbre

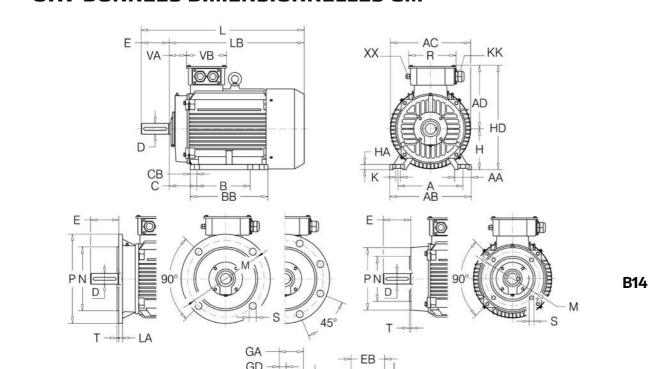
• 6.16 DONNÉES DIMENSIONNELLES JM

SÉRIE JM Tab. 6.16.1

	Mot	eurs		Dime	ension	s prind	cipales					F	Pieds								Brid	e		
	M -	JMD	AC	AD	Н	HD	LB	L	Α	В	C	AB	ВВ	AA	ВА	НА	К	IM	М	NJ6	P	LA	Т	S
						450	470											B5	100	80	120	8	3	N°4 7
56		2-4-6	112	97	56	153	170	190	90	71	36	110	90	30	21	8	6	B14	65	50	80		2,5	N°4 M5
																		B5	115	95	140	10	3	N°4 10
63		2-4-6	120	101	63	164	191	214	100	80	40	122	100	35	24	8	7	B14	75	60	90		2,5	N°4 M5
74		2 / 6 0	427	400	74	470	242	2/2	442	00	/5	422	440	25	2/	0	7	В5	130	110	160	10	3,5	N°4 10
71		2-4-6-8	137	108	71	179	212	242	112	90	45	133	110	35	24	8	7	B14	85	70	105		2,5	N°4 M6
80		2-4-6-8	158	129	80	209	244	284	125	100	50	157	125	35	31	8	10	B5	165	130	200	12	3,5	N°4 12
80		2-4-6-8	158	129	80	209	244	204	125	100	50	15/	125	33	31	0	10	B14	100	80	120		3	N°4 M6
90	s	2-4-6-8	175	142	90	232	270	320	140	100	56	173	125	37	31	10	10	B5	165	130	200	12	3,5	N°4 12
-	L	2400	1/3	172	50	ZJZ	295	345	140	125	50	1/3	150	51	31	10	10	B14	115	95	140		3	N°4 M8
100	L	2-4-6-8	198	156	100	256	338	398	160	140	63	196	172	40	39	11	12	B5	215	180	250	13	4	N°4 15
100	-	2-4-0-8	156	130	100	230	220	336	100	140	03	150	1/2	40	33	"	12	B14	130	110	160		3,5	N°4 M8
112	м	2-4-6-8	219	168	112	280	341	401	190	140	70	227	180	41	43	12	12	B5	215	180	250	14	4	N°4 15
112	IVI	2-4-0-0	219	100	112	280	541	401	190	140	70	227	180	41	45	IZ	IZ	B14	130	110	160		3,5	N°4 M8
422	S	2 4 6 0	250	100	122	222	395	475	246	140	89	262	186	F4	,,	15	10	B5	265	230	300	14	4	N°4 15
132	М	2-4-6-8	258	190	132	322	433	513	216	178	89	262	224	51	46	15	12	B14	165	130	200		3,5	N°4 M10
160	М	2 4 6 0	210	2/2	100	402	500	610	254	210	100	207	260	55	Γ0	10	15	B5	300	250	350	15	5	N°4 19
160	L	2-4-6-8	316	242	160	402	545	655		254	108	304	304	55	50	18	15	B14	215	180	250		4	N°4 M12

SÉRIE JM Tab. 6.16.2

				Вс	out d'a	rbre				J	loint c	d'arbre	2			В	oîte à bornes			
	teurs · JMD					La	nguet	te	Cá	ôté bri	de		é lecte côté c		Bor- nier	Presse-é	toupe			
		D	DB	Ε	GΑ	F	GD	ЕВ	Øi	Øe	Н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
56	2-4-6	9	M4	20	10,2	3	3	14	12	25	7	12	25	7	6-M4	1-M20x1,5	1-Liège	18	80	80
63	2-4-6	11	M4	23	12,5	4	4	16	12	25	7	12	25	7	6-M4	1-M20x1,5	1-Liège	29	87	87
71	2-4-6-8	14	M5	30	16	5	5	25	15	30	7	15	30	7	6-M4	1-M20x1,5	1-Liège	40	87	87
80	2-4-6-8	19	М6	40	21,5	6	6	30	20	35	7	20	35	7	6-M4	1-M20x1,5	1-Liège	31	87	87
90	2-4-6-8	24	M8	50	27	8	7	40	25	40	7	25	40	7	6-M4	1-M25x1,5	1-Liège	31	106	106
100	2-4-6-8	28	M10	60	31	8	7	50	30	47	7	30	47	7	6-M4	1-M25x1,5	1-Liège	31	106	106
112	2-4-6-8	28	M10	60	31	8	7	50	30	47	7	30	47	7	6-M5	2-M25x1,5		35	114	122
132	2-4-6-8	38	M12	80	41	10	8	65	40	62	7	40	62	7	6-M5	2-M32x1,5		43	114	122
160	2-4-6-8	42	M16	110	45	12	8	90	45	62	12	45	62	12	6-M6	2-M40x1,5	1-M16x1,5	78	156	167



B3

B5


Bout d'arbre

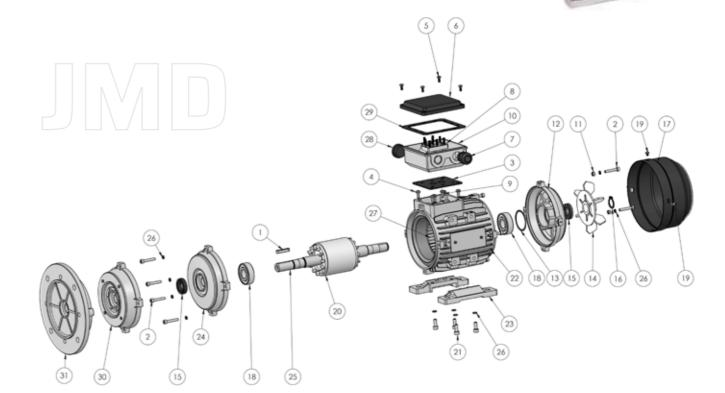
• 6.17 DONNÉES DIMENSIONNELLES GM

SÉRIE GM Tab. 6.17.1

	Mot	teurs		Dime	ension	s prin	cipales					P	Pieds								Bride	2		
(GM-	GMD	AC	AD	н	HD	LB	L	Α	В	C	AB	ВВ	AA	СВ	НА	К	IM	М	NJ6	P	LA	Т	S
160	M L	2-4-6-8	314	251	160	411	498 542	608 652	254	210 254	108	320	260 304	65	26	20	15	B5 B14	300 215	250 180	350 250	15	5	N°4 19 N°4 M12
180	M L	2-4-6-8	355	267	180	447	578 616	688 726	279	241 279	121	350	311 349	70	35	22	15	B5	300	250	350	15	5	N°4 19
200	L	2-4-6-8	397	299	200	499	669	779	318	305	133	390	370	70	32	25	18	B5	350	300	400	17	5	N°4 19
225	S	2-4-6-8	446	322	225	547	684	824	356	286	149	432	370	75	46	28	19	B5	400	350	450	20	5	N°8 19
225	М	2-4-6-8	446	322	225	547	709	819 849	356	311	149	433	395	75	46	28	19	B5	400	350	450	20	5	N°8 19
250	М	2-4-6-8	485	358	250	608	770	910	406	349	168	486	445	80	55	30	24	B5	500	450	550	22	5	N°8 19
280	S M	2-4-6-8	547	387	280	667	842 893	982 1033	457	368 419	190	545	485 536	85	69	35	24	B5	500	450	550	22	5	N°8 19
315	s	2 4-6-8	620	527	315	842	1054	1194 1224	508	406	216	630	570	120	84	45	28	B5	600	550	660	22	6	N°8 24
315	М	2 4-6-8	620	527	315	842	1164	1304 1334	508	457	216	630	680	120	84	45	28	B5	600	550	660	22	6	N°8 24
315	L	2 4-6-8	620	527	315	842	1164	1304 1334	508	508	216	630	680	120	84	45	28	B5	600	550	660	22	6	N°8 24
355	М	2 4-6-8	698	642	355	997	1346	1486 1556	610	560	254	730	750	120	68	52	28	B5	740	680	800	25	6	N°8 24
355	L	2 4-6-8	698	642	355	997	1346	1486 1556	610	630	254	730	750	120	68	52	28	B5	740	680	800	25	6	N°8 24
355	x	2 4-6-8	770	765	355	1120	1710	1850 1920	630	800	224	760	1140	135	88	52	35	B5	840	780	900	28	6	N°8 24
400	М	2 4-6-8	860	680	400	1080	1770	1940 1980	686	630	280	806	1090	120	57	45	35	B5	940	880	1000	25	6	N°8 28
400	L	2 4-6-8	860	680	400	1080	1770	1940 1980	686	710	280	806	1090	120	57	45	35	B5	940	880	1000	25	6	N°8 28
450	L	2 4-6-8	960	820	450	1270	1880 1990	2050 2200	800	1000	250	990	1300	190	107	52	42	B5 B5	940 1080	880 1000	1000 1150	25 33	6	N°8 28 N°8 28

					Во	ut d'ar	bre					Joint o	d'arbre	2			Boît	te à bornes			
		eurs GMD					La	ngue	tte	Cá	ôté bri	ide		lecteu ôté op	r B3 et p.	Bornier	Presse-é	toupe			
			D	DB	Е	GA	F	GD	EB	Øi	Øe	н	Øi	Øe	Н	N°-Ø	N°-KK	N°-XX	VA	VB	R
160		2-4-6-8	42	M16	110	45	12	8	90	45	62	8/12	45	62	8/12	6-M6	2-M40x1,5	1-M16x1,5	67	158	185
180		2-4-6-8	48	M16	110	51,5	14	9	100	55	75	8/12	55	75	8/12	6-M6	2-M40x1,5	1-M16x1,5	82	158	185
200		2-4-6-8	55	M20	110	59	16	10	100	60	80	8/12	60	80	8/12	6-M8	2-M50x1,5	1-M16x1,5	92	187	224
225	s	4-8	60	M20	140	64	18	11	125	65	90	10/12	65	90	10/12	6-M8	2-M50x1,5	1-M16x1,5	95	187	224
225	м	2	55	Man	110	59	16	10	100	60	80	8/12	60	80	8/12	C MO	2 MEO.4 E	1 MC-4 F	٥٢	107	22/
225	M	4-6-8	60	M20	140	64	18	11	125	65	90	10/12	65	90	10/12	6-M8	2-M50x1,5	1-M16x1,5	95	187	224
		2	60		140	64	40	44	425	65	90	10/12	65	90	10/12	6.140	2 1462 45	4 146 45		220	202
250		4-6-8	65	M20		69	18	11	125	70	90	10/12	70	90	10/12	6-M10	2-M63x1,5	1-M16x1,5	88	238	283
		2	65		4/0	69	18	11	425	70	90	10/12	70	90	10/12	6.140	2 1462 4 5	1.445.45	0.5	220	202
280		4-6-8	75	M20	140	79,5	20	12	125	85	110	10/12	85	110	10/12	6-M10	2-M63x1,5	1-M16x1,5	96	238	283
245		2	65		140	69	18	11	125	85	110	10/12	85	110	10/12	C 1424C	2 1462 4 5	4 1 4 4 5 4 5	447	200	22.0
315		4-6-8	80	M20	170	85	22	14	140	95	120	10/12	95	120	10/12	6-M12/16	2-M63x1,5	1-M16x1,5	117	280	320
.		2	75	M20	140	79,5	20	12	125	95	120	10/12	95	120	10/12	6 1420	2 MG2 45	4 146 45	447	220	200
355		4-6-8	100	M24	210	106	28	16	180	110	140	10/12	110	140	10/12	6-M20	2-M63x1,5	1-M16x1,5	117	328	380
	.,	2	75	M20	170	79,5	20	12	140	95	120	10/12	95	120	10/12	6.1420	2 1462 45	4 1 4 6 4 5			
355	Х	4-6-8	100	M24	210	106	28	16	180	120	140	10/12	120	140	10/12	6-M20	3-M63x1,5	1-M16x1,5			
		2	80	M20	170	85	22	14	140	90	115	10/12	90	115	10/12						
400	М	4-6-8	110	M24	210	116	28	16	180	130	150	10/12	130	150	10/12	6-M24	3-M63x1,5	1-M16x1,5			
		2	80	M20	170	85	22	14	140	90	115	10/12	90	115	10/12						
400	L	4-6-8	110	M24	210	116	28	16	180	130	150	10/12	130	150	10/12	6-M24	3-M63x1,5	1-M16x1,5			
		2	95	M24	170	100	25	14	140	110	130	10/12	110	130	10/12	6-M24	3-M63x1,5	1-M16x1,5			
450	L	4-6-8	130	M24	210	137	32	18	180	140	160	10/12	140	160	10/12	6-M24	3-M63x1,5	1-M16x1,5			

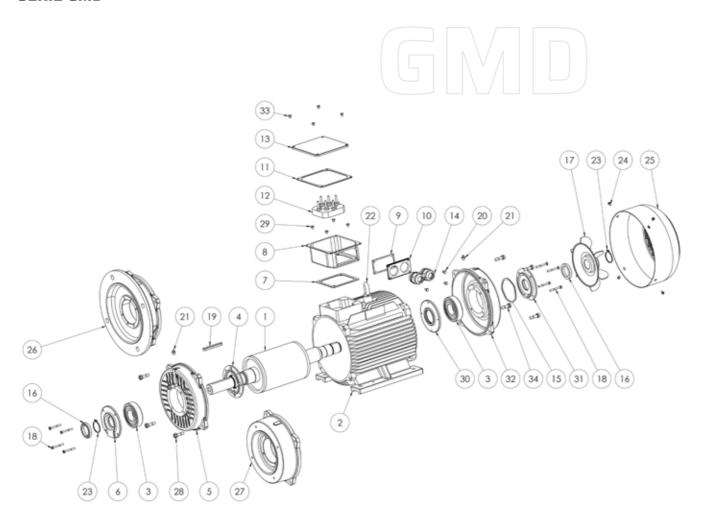
MOTEURS TRIPHASÉS À DOUBLE VITESSE JMD-GMD



MOTEURS TRIPHASÉS À DOUBLE VITESSE

7.1 COMPOSANTS

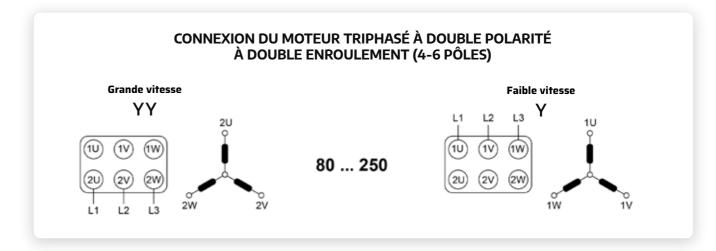
Les moteurs asynchrones à deux vitesses JMD/GMD sont conçus pour une seule tension et un démarrage direct à partir du réseau.

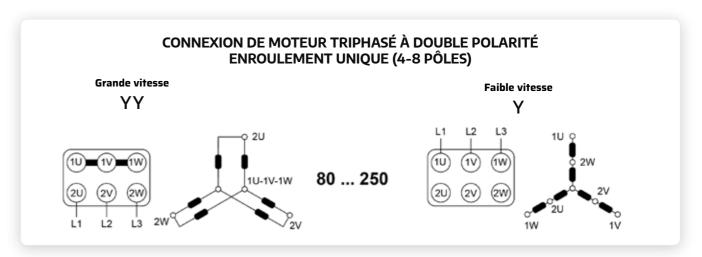


- Languette
- 2) Tirant
- 3) Joint pour boîte à bornes
- 4) Vis de fixation boîte à bornes
- 5) Vis de fixation couvercle de la boîte à bornes
- 6) Couvercle de la boîte à bornes
- 7) Serre-câble
- 8) Bornier
- 9) Vis de fixation du bornier
- 10) Boîte à bornes
- 11) Écrou
- 12) Bouclier B3 côté opposé commande
- B) Ressort de précontrainte
- 14) Ventilateur
- 15) Bague d'étanchéité
- 16) Bague élastique de sécurité

- 7) Couvercle du ventilateur
-) Roulements
- 19) Vis de fixation du couvercle du ventilateur
- 20) Roto
- 21) Vis de fixation pied pour IMB3
- 22) Carcasse
- 23) Pied pour IMB3
- 24) Bouclier côté commande pour IMB3
- 25) Arbre
- 26) Rondelle
- 27) Stator
- 28) Bouchon
- 29) Joint couvercle boîte à bornes
- 30) Bride IMB14
- 31) Bride IMB5

SÉRIE GMD


- Arbre avec rotor
- 2) Carcasse
- 3) Roulement
- Bride interne de blocage du roulement du côté commande
- Bouclier côté commande
- 6) Bride externe de blocage du roulement du côté commande
- 7) Joint pour boîte à bornes
- 8) Boîte à bornes
- Joint cache pour boîte à bornes
- Cache pour boîte à bornes
- 11) Joint couvercle boîte à bornes
- 12) Bornier
- Couvercle pour boîte à bornes
- Serre-câble 14)
- Ressort de précontrainte
- 16) Bague d'étanchéité
- 17) Ventilateur
- Vis de fixation bride externe pour blocage du roulement


- Languette
- 20) Vis cache pour boîte à bornes
- Graisseur
- Ceillets de levage
- 23) Bague élastique de sécurité
- 24) Vis de fixation
- 25) Couvercle du ventilateur
- Bride IMB14 (seulement taille GM 160)
- 28) Vis de fixation du bouclier IMB3 côté commande
- Vis de fixation boîte à bornes
- 30) Bride interne de blocage du roulement du côté opposé de la
- Bride externe de blocage du roulement du côté opposé de la commande
- Bouclier côté opposé commande IMB3
- Vis de fixation couvercle boîte à bornes
- 34) Vis de fixation du bouclier IMB3 du côté opposé à la

• 7.2 RACCORDEMENTS ÉLECTRIQUES

Lorsque le rapport entre les deux vitesses est de 1 à 2, les moteurs des séries JMD et GMD standard sont conçus avec un seul enroulement.

Pour des vitesses différentes il y a deux enroulements séparés.

selpee[®]

MOTEURS TRIPHASÉS À DOUBLE VITESSE

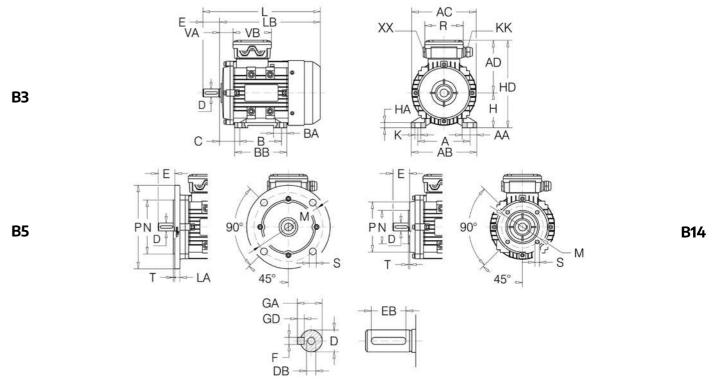
Grandeur	JMD	Grandeur	GMD
80 ~ 160		180 ~ 250	
Puissance	JMD	Puissance	GMD
0,3 ~ 13 kW		7,5 ~ 52 kW	
<u>Polarité</u>	JMD	<u>Polarité</u>	GMD
4-6, 4-8 pôles		4-6, 4-8 pôles	

7.3 DONNÉES ÉLECTRIQUES JMD/GMD DOUBLE ENROULEMENT 4-6 POLÉS

SÉRIE IMD/GMD 4/6 POLÉS

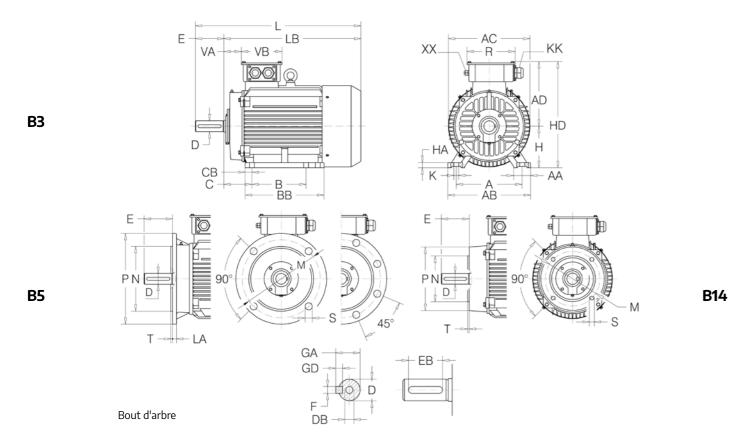
SÉRII	E JMD/GM	D 4/6	POLÉS	5								Та	b. 7.3.1
4/6 Poli	Moteurs JMD/GMD	Pôles	$\mathbf{P}_{\mathbf{N}}$	n _N	T _N	I _{N (400 V)}	COSφ	η	I _s		T _{max}	J Ko m²	Poids
FOII	טויוט/טויון		kW	min ⁻¹	Nm	Α	100%	100%	I _N	T _N	T _N	Kg m²	Кд
	80 a	4	0,30	1440	1,99	1,60	0,54	50,0	2,7	2,3	2,4	0,00143	9,5
		6	0,10	970	0,98	0,85	0,38	45,0	2,9	2,3	2,3		
	80 b	4	0,65	1415	4,39	1,78	0,76	69,0	3,5	1,6	2,3	0,00193	10
		6	0,25	940	2,54	0,9	0,73	55,0	3,0	1,7	2,1		
	90 S	4	0,90	1425	6,03	2,35	0,77	72,0	4,3	1,7	2,4	0,00250	14
		6	0,32	950	3,22	1,15	0,68	59,0	3,3	1,5	2,5	0,00230	
	90 La	4	1,1	1435	7,32	3,2	0,68	73,0	4,5	2,3	2,9	0,00400	15,5
		6	0,4	972	3,93	1,83	0,54	58,0	3,4	2,5	3,2	.,	,
	90 Lb	4	1,4	1410	9,48	3,5	0,79	73,0	4,1	1,8	2,3	0,00470	16
		6	0,45	960	4,48	1,72	0,63	60,0	3,3	2,1	2,5	-,	
	100 La	4	1,7	1440	11,3	4,6	0,74	72,0	5,5	1,9	2,2	0,00540	23
		6	0,6	950	6,03	2,25	0,64	60,0	3,8	2,0	2,3	-,	
ΗZ	100 Lb	4	2,2	1430	14,7	5,0	0,82	77,0	5,3	1,7	2,1	0,00670	25
50	.00 _0	6	0,75	940	7,62	2,54	0,70	61,0	3,5	1,8	2,2	0,000,0	25
JMD Y/Y 400V - 50 Hz	112 Ma	4	3	1450	19,8	6,9	0,82	77,0	5,7	1,9	2,2	0,0115	32
>		6	0,9	965	8,91	2,75	0,71	67,0	4,4	1,8	2,1	0,0113	52
₽	132 Sa	4	4,2	1460	27,5	9,0	0,83	81,0	6,3	2,1	2,4	0,0214	45
≤	152 50	6	1,4	970	13,8	3,7	0,76	72,0	5,0	1,7	2,1	0,0214	45
	132 Ma	4	5,9	1465	38,5	11,3	0,88	86,0	8,1	2,2	2,5	0,0395	55
	132 140	6	2,6	965	25,7	6,74	0,72	77,0	6,2	1,6	2,3	0,0333	JJ
	132 Mb	4	6,5	1460	42,5	12,2	0,88	87,0	7,8	2,1	2,5	0,0496	59
	132 140	6	2,2	965	21,8	5,7	0,72	77,0	5,9	1,5	2,2	0,0430	33
	160 Ma	4	7,5	1470	48,7	14,9	0,85	86,0	8,0	2,0	2,4	0,0712	80
	100 1414	6	2,7	975	26,4	6,9	0,72	78,0	6,0	1,7	2,1	0,0712	00
	160 Mb	4	9,5	1470	61,7	19	0,84	86,0	7,8	1,8	2,3	0,0747	85
	100 1410	6	3,1	970	30,5	7,9	0,71	80,0	5,7	1,6	2,2	0,0747	65
	160 La	4	11	1470	71,5	22	0,83	87,0	7,9	1,9	2,4	0,0918	92
	100 La	6	3,6	975	35,3	8,7	0,74	81,0	6,1	1,8	2,3	0,0318	32
	160 Lb	4	12	1465	78,2	24,1	0,83	87,0	7,7	1,8	2,3	0,1080	98
	IOU LU	6	4	970	39,4	9,8	0,72	82,0	5,8	1,7	2,2	0,1060	36
	100 M	4	16	1475	104	30,0	0,88	87,0	7,8	1,9	2,4	0.1200	100
	180 M	6	5,5	975	53,9	12,3	0,78	83,0	6,2	1,8	2,3	0,1390	180
	4001	4	20	1470	130	39,5	0,85	86,0	7,5	1,8	2,3	0.4500	105
	180 L	6	6,5	980	63,3	14,5	0,79	82,0	5,9	1,8	2,2	0,1580	185
¥	2001-	4	23	1480	148	45,5	0,84	87,0	7,5	1,9	2,4	0.2/20	2/0
- 50	200 La	6	7,2	980	70,2	16,5	0,76	83,0	6,3	1,7	2,3	0,2420	240
V004	20011	4	26	1475	168	50,3	0,85	88,0	7,2	1,7	2,3	0.2020	250
GMD Y/Y 400V - 50 Hz	200 Lb	6	9,5	975	93,0	20,6	0,79	84,0	6,0	1,7	2,2	0,2830	250
∠	225.6	4	34	1480	219	62,9	0,87	89,0	7,4	1,9	2,4	0.4050	275
ਠੋ	225 S	6	11	980	107	23,4	0,81	84,0	6,3	1,8	2,3	0,4060	275
	225.14	4	39	1480	252	71,5	0,88	89,0	7,3	2,0	2,4	0.4600	240
	225 M	6	13	980	127	27,3	0,81	85,0	6,2	1,8	2,3	0,4690	310
		4	47	1480	303	84,2	0,90	90,0	7,5	1,9	2,4		
	250 M	6	16	980	156	32,3	0,84	85,0	6,7	1,9	2,3	0,6600	395

• 7.4 DONNÉES ÉLECTRIQUES JMD/GMD UN ENROULEMENT 4-8 POLÉS


• 7.5 DONNÉES DIMENSIONNELLES JMD

4/8	Moteurs	Důl	P_{N}	n _N	T_N	I _{N (400 V)}	COSφ	η	I _s	T _s	T _{max}	J.	Poids
Poli	JMD/GMD	Pôles	kW	min-1	Nm	Α	100%	100%	I _N	T _N	T _N	Kg m²	Kg
		4	0,7	1390	4,81	1,95	0,77	67,0	4,2	1,6	2,0		
	80 Ь	8	0,16	680	2,25	0,68	0,61	56,0	2,9	1,6	1,9	0,00193	10
		4	1,0	1400	6,82	2,57	0,78	72,0	4,3	1,8	2,3	0.00350	42
	90 S	8	0,23	680	3,23	0,93	0,62	58,0	2,7	1,7	2,1	0,00250	13
	90 La	4	1,3	1410	8,80	3,15	0,82	73,0	4,4	1,9	2,4	0.00400	10
	90 La	8	0,33	680	4,63	1,20	0,66	60,0	2,6	1,7	2,1	0,00400	16
	100 La	4	2,2	1420	14,8	4,90	0,82	75,0	5,1	2,1	2,4	0.00540	10
ž	IOU La	8	0,48	695	6,60	1,85	0,58	64,0	3,6	1,9	2,2	0,00540	19
- 50 }	100 Lb	4	2,6	1410	17,6	5,90	0,83	77,0	4,9	2,0	2,6	0,00670	22
JMD Y/Y 400V - 50 Hz	IOO LD	8	0,65	690	9,00	2,50	0,57	66,0	3,4	1,8	2,1	0,00670	22
7 X	112 Ma	4	3,6	1450	23,7	7,65	0,81	84,0	6,5	2,5	2,9	0,0115	31
ΔĎ	112 1410	8	0,9	715	12,0	3,10	0,60	70,0	3,6	2,2	2,6	0,0115	اد
=	132 Sa	4	4,5	1445	29,7	9,30	0,83	84,0	7,5	2,2	2,6	0,0214	43
	132 34	8	1,1	715	14,7	3,55	0,61	74,0	4,5	1,9	2,3	0,0214	45
	132Ma	4	6,3	1450	41,5	12,3	0,86	86,0	7,9	2,3	2,7	0,0496	57
	1321414	8	1,5	720	19,9	4,50	0,63	76,0	4,7	1,8	2,4	0,0430	JI
	160 a	4	9	1445	59,5	18,3	0,84	85,0	6,6	2,2	2,6	0,0747	85
	100 u	8	2,2	710	29,6	6,30	0,64	79,0	3,4	1,7	2,1	0,0747	05
	160 La	4	13	1440	86,2	24,4	0,87	88,0	6,5	2,3	2,8	0,1080	94
	100 20	8	3,2	715	42,7	8,60	0,66	81,0	3,3	1,6	2,0	0,1000	34
	180 M	4	16	1460	105	30,3	0,87	88,0	6,8	2,4	2,7	0,1390	164
		8	4	715	53,4	10,5	0,67	82,0	4,1	1,8	2,0	5,133 6	
Hz (180 L	4	22	1460	144	42,4	0,86	88,0	6,9	2,3	2,6	0,1580	182
400 V - 50 Hz		8	5,5	720	72,9	14,0	0,68	83,0	4,4	1,7	1,9	5,.555	.02
400 \	200 La	4	29	1465	189	56,8	0,83	89,0	7,2	2,5	2,8	0,2830	245
		8	7,5	720	99,5	19,6	0,66	84,0	4,3	1,9	2,0	-,=555	
GMD Y/Y	225 M	4	40	1475	259	74,6	0,86	90,0	7,4	2,5	2,7	0,4690	290
J		8	9,5	730	124	25,0	0,64	86,0	4,5	1,9	2,0	-,	
	250 M	4	52	1480	336	97,0	0,86	90,0	7,6	2,3	2,8	0,6600	390
	230 1-1	8	13	730	170	33,0	0,65	87,0	4,7	2,0	2,0	0,0000	330

SÉRIE JMD Tab. 7.5.1


1	/lot	eurs		Dime	nsion	s prin	cipales					F	Pieds								Brid	e		
	JM	D	AC	AD	н	HD	LB	L	Α	В	C	AB	BB	AA	ВА	НА	К	IM	М	NJ6	Р	LA	Т	S
80		4-6-8	158	129	80	209	244	284	125	100	50	157	125	35	31	8	10	B5	165	130	200	12	3,5	N°4 12
80		4-0-0	100	129	80	209	244	204	125	100	50	15/	125	33	31	0	10	B14	100	80	120		3	N°4 M6
90	s	4-6-8	175	142	90	232	270	320	140	100	56	173	125	37	31	10	10	B5	165	130	200	12	3,5	N°4 12
90	L	4-6-8	1/5	142	90	232	295	345	140	125	56	1/3	150	3/	31	10	10	B14	115	95	140		3	N°4 M8
100	L	4-6-8	198	156	100	256	338	398	160	140	63	196	172	40	39	11	12	B5	215	180	250	13	4	N°4 15
100		4-0-0	198	סכו	100	256	330	336	160	140	63	ספו	1/2	40	39	"	IZ	B14	130	110	160		3,5	N°4 M8
442	м	4.6.0	240	100	112	200	2/4	401	100	1/0	70	227	180	/1	43	12	12	B5	215	180	250	14	4	N°4 15
112	IVI	4-6-8	219	168	HZ	280	341	401	190	140	70	221	180	41	43	12	12	B14	130	110	160		3,5	N°4 M8
122	s	4-6-8	250	100	122	222	395	475	216	140	89	262	186	51	46	15	12	B5	265	230	300	14	4	N°4 15
132	М	4-0-8	258	190	132	322	433	513	216	178	69	262	224	וכ	46	15	12	B14	165	130	200		3,5	N°4 M10
160	М	4.6.0	210	2/2	100	402	500	610	25%	210	100	207	260	55	Γ0	18	15	B5	300	250	350	15	5	N°4 19
100	L	4-6-8	316	242	160	402	545	655	254	254	108	304	304	55	50	18	15	B14	215	180	250		4	N°4 M12

SÉRIE JMD Tab. 7.5.2

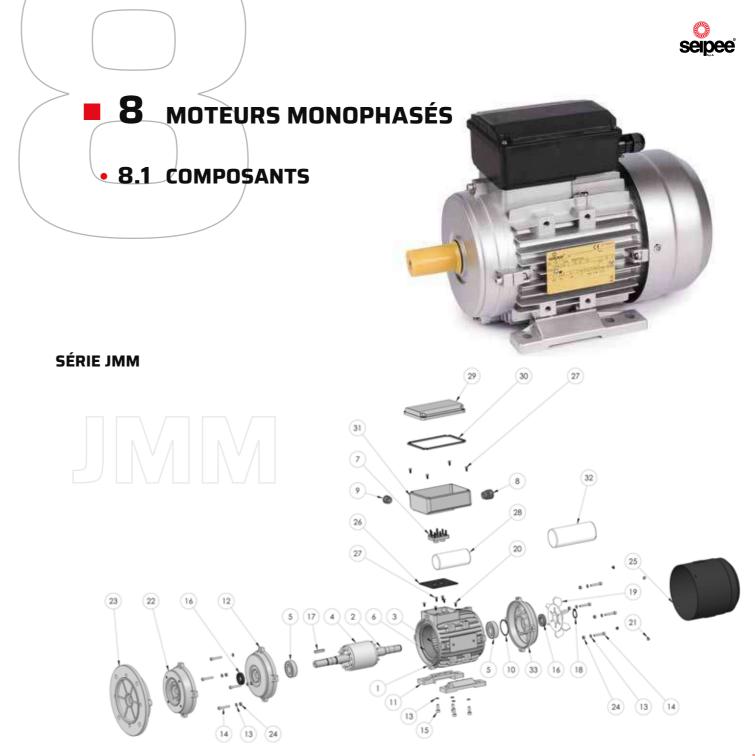
				Воц	ut d'ar	bre					Joint o	d'arbre	è			Boî	te à bornes			
	teurs ⁄ID					La	ingue	tte	C	Côté br	ide		é lecte t côté	eur B3 opp.	Bornier	Presse-	étoupe			
		D	DB	Е	GA	F	GD	EB	Øi	Øe	н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
80	4-6-8	19	M6	40	21,5	6	6	30	20	35	7	20	35	7	6-M4	1-M20x1,5	1-Liège	31	87	87
90	4-6-8	24	M8	50	27	8	7	40	25	40	7	25	40	7	6-M4	1-M25x1,5	1-Liège	31	106	106
100	4-6-8	28	M10	60	31	8	7	50	30	47	7	30	47	7	6-M4	1-M25x1,5	1-Liège	31	106	106
112	4-6-8	28	M10	60	31	8	7	50	30	47	7	30	47	7	6-M5	2-M25x1,5		35	114	122
132	4-6-8	38	M12	80	41	10	8	65	40	62	7	40	62	7	6-M5	2-M32x1,5		43	114	122
160	4-6-8	42	M16	110	45	12	8	90	45	62	12	45	62	12	6-M6	2-M40x1,5	1-M16x1,5	78	156	167

• 7.6 DONNÉES DIMENSIONNELLES GMD 180-250

SÉRIE GMD Tab. 7.6.1

	Moteurs GMD			Dime	ensior	s princ	cipales					F	ieds								Bride	2		
	GM	ID	AC	AD	Н	HD	LB	L	Α	В	c	AB	BB	AA	СВ	НА	K	IM	М	NJ6	P	LA	Т	S
100	М	4/6	357	265	180	, , r	580	690	279	241	121	350	311	70	35	22	15	ВЕ	200	250	250	15	_	18
180	L	4/8	35/	265	180	445	620	730	2/9	279	121	350	349	70	35	22	15	B5	300	250	350	15	5	18
200	L	4/6 4/8	398	305	200	505	655	765	318	305	133	390	370	70	32	25	18	B5	350	300	400	17	5	19
225	s	4/6 4/8	448	325	225	550	670	810	356	286	149	432	370	75	46	28	18	В5	400	350	450	20	5	N° 8 19
225	М	4/6	448	325	225	550	695	805	356	311	149	433	395	75	46	28	19	B5	400	350	450	20	5	N° 8
223	141	4/8	440	323	223	330	093	835	330	311	143	455	333	/5	40	20	زا	53	400	330	430	20)	19
250	М	4/6 4/8	490	365	250	615	775	915	406	349	168	486	445	80	55	30	24	В5	500	450	550	22	5	N° 8 19

SÉRIE GMD Tab. 7.6.2


					Воι	ıt d'ar	bre					Joint o	l'arbre	e			Boî	te à bornes			
ı	Mote GM						La	ngue	tte	C	Côté bi	ride	Côt et	é lecte t côté	eur B3 opp.	Bornier	Presse-	étoupe			
			D	DB	Ε	GA	F	GD	ЕВ	Øi	Øe	н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
180		4/6 4/8	48	M16	110	51,5	14	9	100	55	72	8/12	55	72	8/12	6-M6	2-M40x1,5	1-M16x1,5	82	158	162
200		4/6 4/8	55	M20	110	59	16	10	100	60	80	8/12	60	80	8/12	6-M8	2-M50x1,5	1-M16x1,5	92	187	210
225	S	4/6 4/8	60	M20	140	64	18	11	125	65	90	10/12	65	90	10/12	6-M8	2-M50x1,5	1-M16x1,5	95	187	210
225		4/6	55	M20	110	59	16	10	100	60	80	8/12	60	80	8/12	6-M8	2 ME0.4 E	1-M16x1.5	95	187	210
225	25 M 4/8	60	MZU	140	64	18	11	125	65	90	10/12	65	90	10/12	0-1419	2-M50x1,5	1-14110X1,5	95	10/	210	
250	250	60	M20	140	64	18	11	125	70	90	10/12	70	90	10/12	6-M10	2-M63x1.5	1-M16x1,5	88	238	248	
_50		65	1.120	1 10	69	.0		123	70	90	10/12	70	90	10/12	0 17110	2 11100/1,0	1 1-110X1,5		230	2 70	

new energy for your business.

seipee.it

MOTEURS ASYNCHRONES MONOPHASÉS JMM

- Carcasse
- 2) Arbre
- 3) Stator
- 5) Roulement
- 6) Enroulement
- 7) Bornier
- R) Serre-câhl
-) Rouchon
- 0) Ressort de précontrainte
- 1) Pied pour IMB3
- 12) Bouclier côté commande pour IMB3
- 12) Pondolle
- 14) Vis de fixation pour IMB3-IMB5-IMB14
- 15) Vis de fixation pour pied IMB3
- 16) Bague d'étanchéité
- 17) Languette

- 18) Bague élastique de sécurité
-) Ventilateur
- 20) Vis de fixation boîte à bornes
- 21) Vis de fixation du couvercle du ventilateur
- 22) Bride IMB14
- 23) Bride IMB5
- 24) Écrou
- 25) Couvercle du ventilateur
- 26) Joint pour boîte à bornes
- 27) Vis couvercle boîte à bornes
- 28) Condenseur de marche
- 29) Couvercle pour boîte à bornes
- 30) Joint pour couvercle boîte à bornes
- 31) Boîte à bornes
- 32) Condensateur électronique auxiliaire
- 33) Bouclier B3 côté opposé commande

MOTEURS ASYNCHRONES MONOPHASÉS

Grandeur JMM

56 ~ 100

Puissance JMM

0.09 ~ 3 kW

Polarité JMM

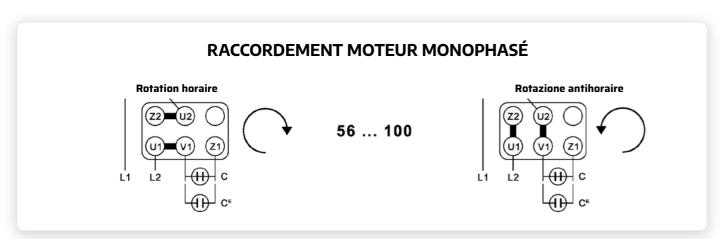
2, 4 pôles

seipee

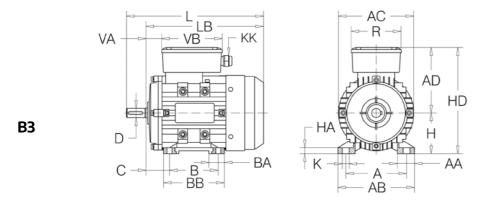
• 8.2 DONNÉES ÉLECTRIQUES JMM

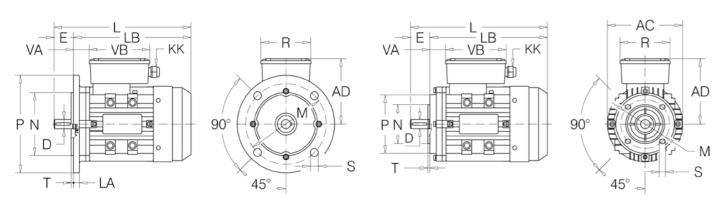
SÉRIE JMM 2 POLÉS Tab. 8.2.1

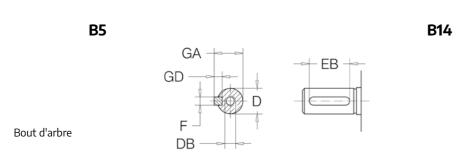
	Moteurs	Pôles	P_N	n _N	T_N	I _N	COSφ	η	Is	T _s	T _{max}	C (450V)	C ^E 2)	J	Poids
2 Poli	JMM	Poles	kW	min ⁻¹	Nm	Α	100%	100%	I _N	T _N	T _N	μF	μF	Kg m²	Kg
	63 b	2	0,18	2700	0,64	1,40	0,95	56,0	4,0	0,7	1,7	10	10	0,00032	4,0
	63 c	2	0,25	2700	0,88	1,90	0,95	57,0	4,0	0,7	1,7	12	10	0,00041	4,3
	71 b	2	0,37	2710	1,30	2,52	0,98	65,1	3,4	0,8	1,9	20	20	0,00065	6,1
	71 c	2	0,55	2745	1,91	3,72	0,94	68,3	3,8	0,8	2,0	25	20	0,00075	7,2
Z	80 b	2	0,75	2776	2,58	4,93	0,94	70,7	4,1	0,8	2,1	30	40	0,00110	10,5
- 50	80 c	2	1,1	2733	3,84	6,75	0,96	73,5	4,1	0,9	1,9	40	40	0,00140	11,0
>	80 d	2	1,5	2749	5,21	8,87	0,98	74,7	4,2	0,9	2,0	60	60	0,00145	11,1
230	90 Sb	2	1,5	2749	5,21	8,87	0,98	74,7	3,6	0,9	1,8	50	60	0,00170	12,6
	90 Lb	2	1,85	2760	6,40	10,9	0,98	74,7	3,9	0,7	1,8	60	60	0,00210	13,1
	90 Lc	2	2,2	2743	7,66	12,9	0,98	75,3	3,9	0,6	1,9	70	85	0,00240	14,4
	100 La	2	2,2	2840	7,40	12,6	0,99	77,0	5,0	0,7	2,0	90	85	0,00250	20,8
	100 Lb	2	3	2850	10,1	16,3	0,99	80,4	5,3	0,8	2,1	90	85	0,00270	22,7


SÉRIE JMM 4 POLÉS Tab. 8.2.2

4	Moteurs	Pôles	$\mathbf{P}_{\mathbf{N}}$	n _N	T _N	I _N	COSφ	η	Is	T _s	T _{max}	C (450V)	C E 2)	J	Poids
Poli	JMM	roles	kW	min ⁻¹	Nm	Α	100%	100%	I _N	T _N	T _N	μF	μF	Kg m²	Kg
	56 c	4	0,09	1377	0,62	0,88	0,95	46,9	2,3	0,8	1,7	6	10	0,00020	3,4
	63 b	4	0,12	1380	0,83	1,10	0,95	52,0	2,0	0,8	1,7	6	10	0,00036	3,9
	63 c	4	0,18	1387	1,24	1,66	0,92	51,6	2,5	0,8	1,8	12	10	0,00044	4,2
	71 b	4	0,25	1316	1,81	2,07	0,97	54,0	2,4	0,8	1,8	16	16	0,00081	6,1
Z	71 c	4	0,37	1348	2,62	2,63	0,98	62,6	2,8	0,8	1,7	20	16	0,00103	7,2
- 50	80 b	4	0,55	1369	3,84	4,22	0,92	61,6	2,9	0,7	1,7	25	20	0,00180	11,0
230 V	80 c	4	0,75	1342	5,34	4,89	0,97	68,7	3,0	0,7	1,7	35	30	0,00210	11,3
23(90 Sb	4	1,1	1349	7,79	7,02	0,95	71,6	3,2	0,6	1,7	40	40	0,00270	12,6
	90 Lb	4	1,5	1372	10,4	9,22	0,95	74,8	3,7	0,7	1,7	50	60	0,00470	14,4
	90 Lc	4	1,8	1350	12,7	11,0	0,96	74,0	3,8	0,7	1,8	60	60	0,00500	19,8
	100 Lb	4	2,2	1408	14,9	12,3	0,99	78,5	4,2	0,5	1,9	70	85	0,00670	19,8
	100 Lc	4	3	1399	20,5	16,6	0,99	79,4	4,2	0,5	1,8	90	85	0,00810	22,5

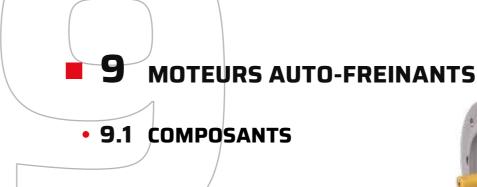

Secteurs d'utilisation



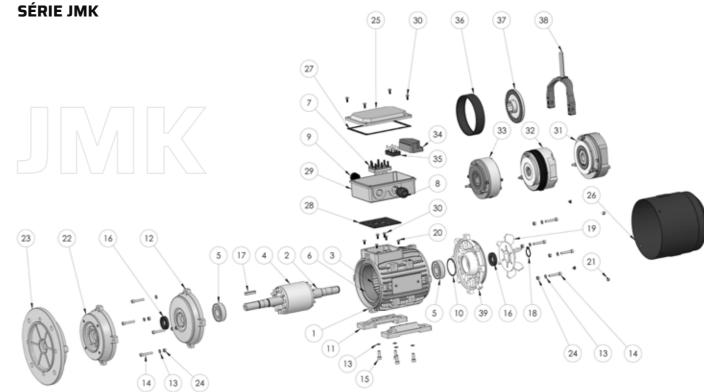

• 8.3 CONNECTIONS ELECTRIQUES

• 8.4 DONNÉES DIMENSIONNELLES JMM

SÉRIE JMM Tab. 8.4.1


N	/lote	eurs		Dime	nsion	s princ	ipales					F	Pieds								Brid	e		
	JMI	М	AC	AD	Н	HD	LB	L	Α	В	c	AB	BB	AA	ВА	НА	К	IM	М	NJ6	Р	LA	Т	S
56		2-4	113	112	56	168	176	196	90	71	36	110	89	20	20	6	6	B5	100	80	120	8	3	N°4 7
50		2-4		IIZ	30	100	1/0	150	50	/1	50	110	05	20	20	U	0	B14	65	50	80		2,5	N°4 M5
63		2-4	122	116	63	179	196	219	100	80	40	121	103	28	26	9	7	B5	115	95	140	9	3	N°4 9
63		2-4	122	116	63	1/9	196	219	100	80	40	121	103	28	26	9	/	B14	75	60	90		2,5	N°4 M5
		_																B5	130	110	160	9	3,5	N°4 10
71	2-4	139	123	71	194	231	261	112	90	45	133	106	28	23	10	7	B14	85	70	105		2,5	N°4 M6	
80		2-4	156	144	80	224	254	294	125	100	50	161	130	35	35	11	9	B5	165	130	200	10	3,5	N°4 12
80		2-4	150	144	80	224	234	234	رکا	100	30	101	150	33	33	"	,	B14	100	80	120		3	N°4 M6
90	s	2-4	174	150	90	240	236	286	140	100	56	174	130	35	33	12	10	B5	165	130	200	12	3,5	N°4 12
90	L	2-4	1/4	150	90	240	286	336	140	125	36	1/4	155	33	33	IZ	10	B14	115	95	140		3	N°4 M8
															_		B5	215	180	250	13	4	N°4 15	
100		2-4	198	165	100	265	332	392	160	140	63	197	175	50	42	15	12	B14	130	110	160		3,5	N°4 M8

SÉRIE JMM Tab. 8.4.2


				Bou	t d'art	ore					Joint o	l'arbre	È			Boî	te à bornes			
Mot e JMI						La	ngue	tte	C	ôté b	ride		é lecte côté	eur B3 opp.	Bornier	Presse-	étoupe			
		D	DB	Ε	GA	F	GD	ЕВ	Øi	Øe	н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
56	4	9	МЗ	20	10,2	3	3	12	12	22	5	12	22	5	6-M4	PG 11		22	118	94
63	2-4	11	M4	23	12,5	4	4	16	12	24	7	12	24	7	6-M4	PG 11		23	118	94
71	2-4	14	M5	30	16	5	5	22	15	25	7	15	25	7	6-M4	PG 11		31	118	94
80	2-4	19	М6	40	21,5	6	6	32	20	35	7	20	35	7	6-M4	PG 11		32	141	112
90	2-4	24	M8	50	27	8	7	40	25	37	7	25	37	7	6-M4	PG 11		38	141	112
100	2-4	28	M10	60	31	8	7	50	30	42	7	30	42	7	6-M4	PG 11		30	141	112

MOTEURS AUTO-FREINANTS JMK-GMK

- Carcasse
- 2) Arbre
- 3) Stator
- (4) Rotor
- 5) Enroulement
- 7) Bornier
- 8) Serre-câble
- 9) Bouchon
-) Ressort de précontrainte
- Pied pour IMB3
- 12) Bouclier côté commande pour IMB3
- 3) Rondelle
- 14) Vis de fixation pour IMB3-IMB5-IMB14
- 15) Vis de fixation pour pied IMB3
- 16) Bague d'étanchéité
- 17) Languette
- 18) Bague élastique de sécurité
- 19) Ventilate
- 20) Vis de fixation boîte à bornes

- 21) Vis de fixation du couvercle du ventilateur
- 22) Bride IMB14
- 23) Bride IMB5
- 24) Écrou
- 25) Couvercle pour boîte à bornes
- 26) Couvercle du ventilateur
- 27) Joint pour boîte à bornes
- 28) Joint pour boîte à bornes
- 29) Boîte à bornes
- 30) Vis couvercle boîte à bornes
- 31) Frein T.C.
- 32) Frein T.A.
- 33) Frein L.7.
- 34) Redresseur pour frein
- 35) Boîte à bornes pour frein A.C.
- 36) Protection frein avec matériau de friction
- 37) Disque frein avec matériau de friction anti-adhésif
- 38) Levier de déblocage
- 39) Bouclier côté opposé commande

seipee

• 9.2 CARACTÉRISTIQUES GÉNÉRALES

Moteur de frein électrique asynchrone triphasé standardisé pour une utilisation générale dans des applications industrielles, avec rotor à cage en court-circuit, fermé, auto-ventilé extérieurement (méthode de refroidissement IC 411), classe d'isolation thermique F/B adaptée au fonctionnement avec onduleur.

Conçu pour fonctionner en service continu (**S1**) à la tension et à la fréquence nominales, température de l'air ambiant de travail : de -15 à +40°C.
Altitude max. 1000 m au-dessus du niveau de la mer.

SÉRIE MOTORI JMK

De la hauteur d'axe de 63 à 160, puissance 0,12...18,5 kW, 2-4-6-8 pôles en alliage léger d'aluminium moulé sous pression.

Excellente conductivité thermique et excellente résistance à la corrosion.

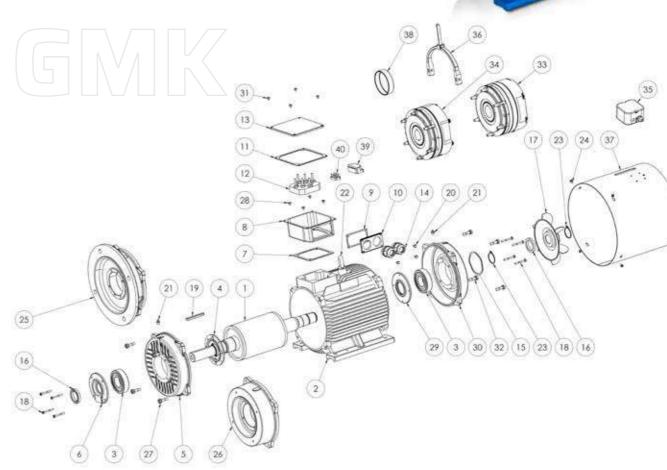
Bague de levage à partir de la taille 100.

Pieds en aluminium avec possibilité d'installation sur les 3 côtés du moteur afin d'avoir la boîte à bornes du côté souhaité: IM B3, IM B5, IM B14 et IM B35 (B3/B5) et IM B34 (B3/B14) / R, B, L, T. De série, le moteur IM B3 est fourni avec une boîte à bornes en haut (position T).

Les moteurs peuvent également fonctionner dans les positions de montage correspondantes avec un axe vertical; au moment de la demande du moteur il est obligatoire de préciser son emplacement.

La forme de construction avec axe horizontal reste indiquée sur la plaque du moteur.

Boîte à bornes et couvercle de boîte à bornes en alliage léger d'aluminium moulé sous pression avec accès bilatéral par câble taille 63 ... 132. Dans la taille 160 standard deux presse-étoupes côté droit, côté gauche sur demande. Borne de terre à l'intérieur de la boîte à bornes pour une deuxième borne de terre sur la carcasse.


Boîte à bornes pour l'alimentation du moteur à 6 bornes.

Boucliers et brides tous avec des connexions de serrage « en appui » et montés sur le boîtier avec un couplage « étroit ». boucliers et brides du côté de l'arbre en alliage d'aluminium léger moulé sous pression, logements des roulements renforcés en acier à partir des tailles 80... 160. Bouclier côté opposé couplage en fonte.

Les moteurs JMK sont revêtus de poudre en gris aluminium RAL 9006 sur la carcasse et avec un couvercle de ventilateur/couvercle de frein en tôle d'acier revêtu de poudre couleur noire RAL 9005.

9.3 COMPOSANTS

SÉRIE GMK

- Arbre avec rotor
- 2) Carcasse
- 3) Roulement
- 4) Bride interne de blocage du roulement du côté commande
- 5) Bouclier côté commande
- 6) Bride externe de blocage du roulement du côté commande
- 7) Joint pour boîte à bornes
- 8) Boîte à bornes
- 9) Joint cache pour boîte à bornes
- 10) Cache pour boîte à bornes
-) Joint couvercle boîte à bornes
- 12) Bornier
- 13) Couvercle pour boîte à bornes
- 14) Serre-câble
- Ressort de précontrainte
- 16) Bague d'étanchéité
- 17) Ventilateur
- 18) Vis de fixation bride pour blocage du roulement
- 19) Languette
- 20) Vis cache pour boîte à bornes

- 21) Graisseur
- 22) Ceillets de levage
- 23) Bague élastique de sécurité
- 24) Vis de fixation couvercle du ventilateur
- 25) Bride IMB5
- 26) Bride IMB14 (seulement taille GM 160)
- 27) Vis de fixation du bouclier IMB3 côté commande
- 28) Vis de fixation boîte à bornes
- 29) Bride interne de blocage du roulement du côté opposé de la commande
- 30) Bouclier côté opposé commande IMB3
- 1) Vis de fixation couvercle boîte à bornes
- 2) Vis de fixation du bouclier IMB3 du côté opposé à la commande
- 33) Frein T.A.
- 34) Frein T.C.
- 35) Boîte auxiliaire de frein
- 36) Levier de déblocage
- 37) Couvercle du ventilateur
- 38) Protection frein en caoutchouc
- 39) Redresseur pour frein
- 40) Boîte à bornes pour frein A.C.

seipee

SÉRIE MOTORI GMK

De la hauteur de l'axe 180 à 225, puissance 11...45kW 2-4-6-8 poteaux avec carcasse en fonte avec œillet de levage du moteur, pieds en fonte intégrés à la carcasse et boucliers et brides en fonte.

De série, le moteur IMB3 est fourni sur demande avec une boîte à bornes latérale.

Boîte à bornes et couvercle en acier (boîte à bornes pivotante à 90°). Entrée des câbles d'alimentation sur le côté droit.

Borne de terre à l'intérieur de la boîte à bornes pour une deuxième borne de terre sur la carcasse.

Boîte à bornes pour l'alimentation du moteur à 6 bornes.

Les moteurs GMK sont peints avec de l'émail nitro combiné, de couleur bleu RAL 5010 avec couvercle de ventilateur/frein en tôle d'acier revêtue de poudre à la fois à l'intérieur et à l'extérieur du même RAL.

Les boucliers et les brides sont entièrement en fonte.

9.4 ROULEMENTS

Les séries JMK et GMK sont toutes deux équipées de roulements à billes rigides à couronne unique, de doubles boucliers lubrifiés à vie, des meilleures marques et sélectionnés pour une utilisation spécifique sur les moteurs électriques. Les roulements blindés ZZ, 2RS ou DDU sont lubrifiés à vie avec de la graisse au lithium pour une température de travail de -15...+110 °C, et ne nécessitent donc pas d'entretien.

Tab. 9.4.1

Moteurs		izontal B5, B6, B7, B8, B14		'ertical 15, V5, V18, V6	Dimension des roulements
	Côté couplage	Côté opposé coup.	Côté couplage	Côté opposé coup.	[Ø¡xØexH]
JMK 63	6201-2RS/DDU	6202-2RS/DDU	6201-2RS/DDU	6202-2RS/DDU	12x32x10 / 15x35x11
JMK 71	6202-2RS/DDU	6203-2RS/DDU	6202-2RS/DDL	J 6203-2RS/DDU	15x35x11 / 17x40x1
JMK 80	6204-	2RS/DDU	6204	-2RS/DDU	20x47x14
JMK 90	6205-	2RS/DDU	6205	-2RS/DDU	25x52x1
JMK 100	6206-	2RS/DDU	6206	-2RS/DDU	30x62x16
JMK 112	6306-2RS/DDU	6207-2RS/DD	6306-2RS/DDU	6207-2RS/DDU	30x72x19 / 35x72x17
JMK 132	6308-	2RS/DDU	6308	s-2RS/DDU	40x90x23
JMK 160	6309-	2RS/DDU	6309	-2RS/DDU	45x100x25
GMK 180	6311 ZZ C3	6311-2RS/DDU C3	6311 ZZ C3	6311-2RS/DDU C3	55x120x29
GMK 200	6312 ZZ C3	6312-2RS/DDU C3	6312 ZZ C3	6312-2RS/DDU C3	60x130x31
GMK 225	6313 ZZ C3	6313-2RS/DDU C	6313 ZZ C3	6313-2RS/DDU C3	65x140x33
GMK 250	6314 ZZ C3	6314-2RS/DDU C3	6314 ZZ C3	6314-2RS/DDU C3	70x150x35
GMK 280 2 2-4-6	6314 ZZ C3 6317 ZZ C3	6314-2RS/DDU C3 6317-2RS/DDU C3	6314 ZZ C3 6317 ZZ C3	6314-2RS/DDU C3 6317-2RS/DDU C3	70x150x35 85x180x41

• 9.5 ARBRE

Arbre moteur en acier au carbone avec extrémités cylindriques, trou fileté dans la tête et la languette unifiées; vilebrequin verrouillé axialement par deux bagues élastiques : l'une sur l'arbre, l'autre sur le bouclier postérieur.

Équilibrage dynamique du rotor avec une moitié de languette insérée dans l'extrémité de l'arbre.

Sur le côté opposé de la commande il y a un trou fileté des dimensions suivantes :

JMK 63 = M4x12mm JMK 71 = M5x15mm JMK 80 = M6x15mm JMK 90-100-112-132 = M8x25mm JMK 160 = M10x25mm GMK 180...280 = M10x25mm

9.6 RACCORDEMENT MOTEUR

Tension d'alimentation moteur :

Taille 63 ... 112 -> tension standard \triangle 230 V / Y 400 V Taille 132 e 160 -> tension standard \triangle 400 V Différentes tensions disponibles sur demande

MOTEURS AUTO-FREINANTS IE3

Grandeur	ЈМК	Grandeur	GMK
80 ~ 160		180 ~ 225	
Puissance	ЈМК	Puissance	GMK
0.75 ~ 18.5 kW		15 ~ 90 kW	
<u>Polarité</u>	ЈМК	<u>Polarité</u>	GMK
2, 4, 6, 8 pôles		2, 4, 6, 8 pôles	

Secteurs d'utilisation

• 9.7 DONNÉES ÉLECTRIQUES JMK IE3

SÉRIE JMK 2 POLÉS IE3

Tab. 9.7.1

IE3	Moteurs	Pôl-	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	Ţ	T _{max}	ı	Poids
	JMK	es	kW	min-1	Nm	Α	100%	100%	75%	50%	I _N	T_N	T _N	Kg m²	Kg
	80 a	2	0,75	2880	2,49	1,62	0,83	80,7	80,7	79,1	6,8	2,3	2,3	0,0014	13,3
	80 b	2	1,1	2880	3,65	2,31	0,83	82,7	82,7	81,0	7,3	2,3	2,3	0,0017	14,4
ZH C	80 c	2	1,5	2895	4,95	3,05	0,83	84,2	84,2	82,5	7,5	2,3	2,3	0,0018	15,5
V 50	90 S	2	1,5	2895	4,95	3,10	0,83	84,2	84,2	82,5	7,6	2,3	2,3	0,0019	20,8
400	90 La	2	2,2	2895	7,26	4,35	0,85	85,9	85,9	84,2	7,8	2,3	2,3	0,0025	22,8
230 / 400 V	90 Lb*	2	3	2895	9,9	5,65	0,88	87,1	87,1	85,4	8,0	2,3	2,3	0,0030	27
1	100 La	2	3	2895	9,9	5,65	0,88	87,1	87,1	85,4	8,1	2,3	2,3	0,0037	31,4
7/ ∇	100 Lb*	2	4	2900	13,2	7,45	0,88	88,1	88,1	86,3	8,1	2,3	2,3	0,0040	33,5
	112 Ma	2	4	2900	13,2	7,45	0,88	88,1	88,1	86,3	8,3	2,3	2,3	0,0085	42,5
	112 Mb*	2	5,5	2930	17,9	10,1	0,88	89,2	89,2	87,4	8	2,2	2,3	0,0095	47
	132 Sa	2	5,5	2930	17,9	10,1	0,88	89,2	89,2	87,4	8,0	2,2	2,3	0,0195	59,5
	132 Sb	2	7,5	2930	24,4	13,7	0,88	90,1	90,1	88,3	7,8	2,2	2,3	0,0245	65
	132 Ma	2	9,25	2940	30,0	16,8	0,88	90,1	90,1	88,3	7,8	2,2	2,3	0,0260	74
50Hz	132 Mb*	2	11	2945	35,7	19,3	0,90	91,2	91,2	89,4	7,9	2,2	2,3	0,0280	76,4
400V	132 Mc*	2	15	2945	48,6	25,9	0,91	91,9	91,9	90,1	8,0	2,2	2,3	0,0400	80,5
D 4 (160 Ma	2	11	2945	35,7	19,3	0,90	91,2	91,2	89,4	7,9	2,2	2,3	0,0450	108
	160 Mb	2	15	2945	48,6	25,9	0,91	91,9	91,9	90,1	8,0	2,2	2,3	0,0500	122
	160 La	2	18,5	2940	60,1	32,5	0,89	92,4	92,4	90,6	8,1	2,2	2,3	0,0650	133
	160 Lb*	2	22	2955	71,1	38,1	0,90	92,70	92,70	90,80	8,2	2,2	2,3	0,0940	144

Tab. 9.8.1

SÉRIE JMK 4 POLÉS IE3

Tab. 9.7.2

IE3	Moteurs JMK	Pôl.	P _N	n _N	T _N	I _{N (400} v)	COSφ	4000/	η	500/			T _{max}	J Kg m²	Poids Kg
	ĺ		kW	min ⁻¹	Nm	Α	100%	100%	75%	50%	'N	" N	"N		
	80 b	4	0,75	1420	5,04	1,77	0,74	82,5	82,5	80,9	6,3	2,3	2,3	0,0023	15,5
	80 c*	4	1,1	1445	7,27	2,55	0,74	84,1	84,1	82,4	6,5	2,3	2,3	0,0025	17,7
HZ	90 S	4	1,1	1435	7,32	2,52	0,75	84,1	84,1	82,4	6,5	2,3	2,3	0,0027	20,6
V 5C	90 La	4	1,5	1435	9,98	3,38	0,75	85,3	85,3	83,6	6,6	2,3	2,3	0,0037	25
230 / 400 V 50 Hz	90 Lb*	4	1,85	1435	12,3	3,95	0,78	86,7	86,7	85,0	6,7	2,3	2,3	0,0043	25,5
30 /	90 Lc*	4	2,2	1435	14,6	4,68	0,78	86,7	86,7	85,0	6,9	2,3	2,3	0,0051	26
1	100 La	4	2,2	1445	14,5	4,52	0,81	86,7	86,7	85,0	6,9	2,3	2,3	0,0069	33,5
7/√	100 Lb	4	3	1445	19,8	6,02	0,82	87,7	87,7	85,9	7,5	2,3	2,3	0,0084	39
	112 Ma	4	4	1450	26,3	7,95	0,82	88,6	88,6	86,8	7,6	2,3	2,3	0,0140	49,3
	112 Mc*	4	5,5	1460	36,0	11,1	0,80	89,6	89,6	87,8	7,7	2,0	2,3	0,0170	52,6
	132 S	4	5,5	1465	35,9	10,8	0,82	89,6	89,6	87,8	7,7	2,0	2,3	0,0310	66
¥	132 Ma	4	7,5	1465	48,9	14,4	0,83	90,4	90,4	88,6	7,5	2,0	2,3	0,0370	77
400V 50Hz	132 Mb*	4	9,25	1460	60,5	18,0	0,82	90,4	90,4	88,6	7,5	2,0	2,3	0,0500	79,5
400	132 Mc*	4	11	1465	71,7	21,2	0,82	91,4	91,4	89,6	7,4	2,2	2,3	0,0530	91,5
◁	160 M	4	11	1475	71,2	20,4	0,85	91,4	91,4	89,6	7,4	2,2	2,3	0,0800	117
	160 L	4	15	1475	97,1	27,3	0,86	92,1	92,1	90,3	7,5	2,2	2,3	0,0980	133,5

SÉRIE JMK 6 POLÉS IE3	Tab. 9.7.3
-----------------------	------------

IE3	Moteurs JMK	Pôl.	P _N	n _N	T _N	l _{N (400} V)	COSφ	4000/	η	F00/	I _s		T _{max}	J Kg m²	Poids Kg
			kW	min ⁻¹	Nm	Α	100%	100%	75%	50%	'N	*N	*N	Ĭ	Ĭ
72	90 S	6	0,75	935	7,66	2,25	0,61	78,9	78,9	77,3	5,8	2,1	2,1	0,0036	19,5
- 230 / 50 Hz	90 La	6	1,1	945	11,1	2,84	0,69	81,0	81,0	79,4	5,9	2,1	2,1	0,0041	23,5
Δ/Y . 400V	100 L	6	1,5	945	15,2	3,80	0,69	82,5	82,5	80,9	6,0	2,1	2,1	0,0080	32,5
4 4	100 M	6	2,2	955	22,0	5,31	0,71	84,3	84,3	82,6	6,0	2,1	2,1	0,0190	41,5
	132 S	6	3	965	29,7	7,12	0,71	85,6	85,6	83,9	6,2	2,0	2,1	0,0340	62
50Hz	132 Ma	6	4	965	39,6	9,37	0,71	86,8	86,8	85,1	6,8	2,0	2,1	0,0400	69
400V	132 Mb	6	5,5	965	54,4	12,0	0,75	88,0	88,0	86,2	7,1	2,0	2,1	0,0500	78,5
D 40	160 M	6	7,5	970	73,8	15,8	0,77	89,1	89,1	87,3	6,7	2,1	2,1	0,1100	107
	160 L	6	11	970	108,3	22,3	0,79	90,3	90,3	88,5	6,9	2,1	2,1	0,1300	142

SÉRIE JMK 8 POLÉS IE3 Tab. 9.7.4

IE3	Moteurs JMK	Pôl.	P _N	n _N min ⁻¹	T _N	I _{N (400} v)	COSφ 100%	100%	η 75 %	50%	I _s	T _s T _N	T _{max}	J Kg m²	Poids Kg
230 / 50 Hz	100 La	8	0,75	710	10,1	2,29	0,63	75,0	75,3	72,0	3,5	1,7	2,1	0,0099	29,5
	100 Lb	8	1,1	710	14,8	3,19	0,64	77,7	78,0	74,5	3,5	1,7	2,1	0,0115	31
Δ/Y - 400 V	112 Ma	8	1,5	710	20,2	4,18	0,65	79,7	80,1	76,6	4,2	1,8	2,1	0,0260	41,5
	132 Sa	8	2,2	720	29,2	5,88	0,66	81,9	82,3	77,8	5,5	2,0	2,0	0,0385	57
50Hz	132 Ma	8	3	720	39,8	7,74	0,67	83,5	83,8	79,8	5,5	2,0	2,0	0,0510	60
400V	160 Ma	8	4	720	53,0	10,0	0,68	84,8	85,2	81,2	6,0	1,9	2,1	0,1100	98
Δ 4(160 Mb	8	5,5	720	72,9	13,5	0,68	86,2	86,6	81,8	6,0	2,0	2,2	0,1200	105
	160 L	8	7,5	720	99,5	18,0	0,69	87,3	87,7	83,2	6,0	1,9	2,2	0,1390	115

* Correspondance puissance ou puissance/amplitude non normalisée

• 9.8 DONNÉES ÉLECTRIQUES GMK IE3

SÉRIE GMK 2 POLÉS IE3

IE3	Moteurs GMK	Pôl.	P _N	n _N	T _N	l _{N (400} v)	COSφ 100%	100%	η 75 %	50%			T _{max}	J Kg m²	Poids Kg
						A								0.4450	
	180 M	2	22	2955	71,1	38,1	0,90	92,7	92,7	90,8	8,2	2,2	2,3	0,1150	205
	200 La	2	30	2960	96,8	52,1	0,89	93,3	93,3	91,4	7,5	2,2	2,3	0,1700	285
50Hz	200 Lb	2	37	2960	119,4	62,6	0,91	93,7	93,7	91,8	7,5	2,2	2,3	0,2000	295
400V	225 M	2	45	2965	144,9	78,5	0,88	94,0	94,0	92,1	7,6	2,2	2,3	0,3000	360
D4 40	250 M	2	55	2970	176,8	94,6	0,89	94,3	94,3	92,4	7,6	2,2	2,3	0,4400	455
	280 S	2	75	2975	240,7	127	0,90	94,7	94,7	92,8	6,9	2,0	2,3	0,6900	585
	280 M	2	90	2975	288,9	154	0,89	95,0	95,0	93,1	7,0	2,0	2,3	0,8000	665

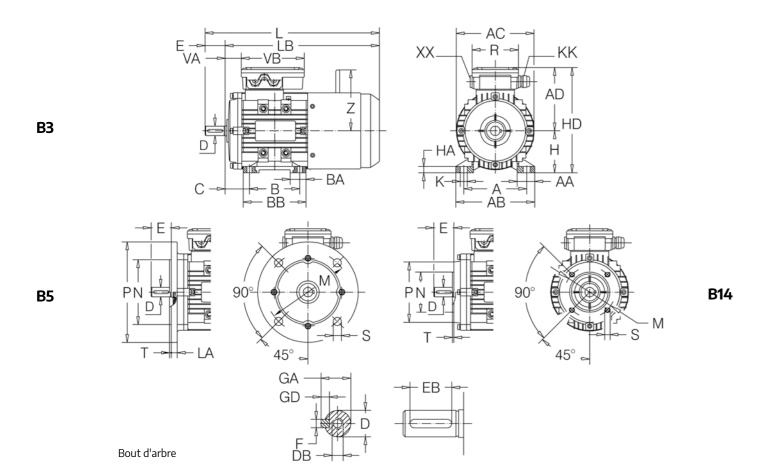
SÉRIE GMK 4 POLÉS IE3

Tab. 9.8.2

IE3	Moteurs GMK	Pôl.	P _N	n _N min ⁻¹	T _N	I _{N (400} v) A	COSφ 100%	100%	η 75 %	50%			T _{max}	J Kg m²	Poids Kg
	180 M	4	18,5	1470	120,2	34,3	0,84	92,6	92,6	90,7	7,5	2,2	2,3	0,1470	195
	180 L	4	22	1470	142,9	40,2	0,85	93,0	93,0	91,1	7,7	2,2	2,3	0,1700	228
50Hz	200 L	4	30	1475	194,2	53,8	0,86	93,6	93,6	91,7	7,8	2,2	2,3	0,2750	310
V 50	225 S	4	37	1485	237,9	66,1	0,86	93,9	93,9	92,0	7,2	2,2	2,3	0,4300	352
4007	225 M	4	45	1485	289,4	79,3	0,87	94,2	94,2	92,3	7,3	2,2	2,3	0,4900	387
◁	250 M	4	55	1485	353,7	96,5	0,87	94,6	94,6	92,7	7,4	2,2	2,3	0,7000	475
	280 S	4	75	1485	482,3	129	0,88	95,0	95,0	93,1	7,4	2,2	2,3	1,1800	618
	280 M	4	90	1485	578,7	157	0,87	95,2	95,2	93,3	6,7	2,2	2,3	1,5300	700

SÉRIE GMK 6 POLÉS IE3

Tab. 9.8.3

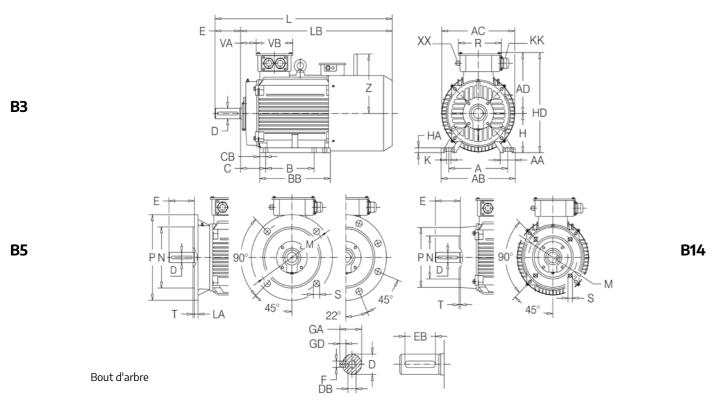

IE3	Moteurs	Pôl.	P _N	n _N	T _N	I _{N (400} V)	COSφ		η		I _s	T _s	T _{max}	1.	Poids
	GMK	. 0	kW	min-1	Nm	A	100%	100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
	180 L	6	15	980	146,2	29,3	0,81	91,2	91,2	89,4	7,2	2,0	2,1	0,2100	213
	200 La	6	18,5	980	180,3	35,9	0,81	91,7	91,7	89,9	7,2	2,1	2,1	0,3200	275
50Hz	200 Lb	6	22	980	214,4	41,5	0,83	92,2	92,2	90,4	7,3	2,1	2,1	0,3650	293
400V	225 M	6	30	980	292,3	55,5	0,84	92,9	92,9	91,0	7,1	2,0	2,1	0,5500	344
D 4 €	250 M	6	37	985	358,7	68,1	0,84	93,3	93,3	91,4	7,1	2,1	2,1	0,8500	450
	280 S	6	45	985	436,3	81,6	0,85	93,7	93,7	91,8	7,2	2,1	2,0	1,4500	555
	280 M	6	55	985	533,2	99,3	0,85	94,1	94,1	92,2	7,2	2,1	2,0	1,7500	620

SÉRIE GMK 8 POLÉS IE3 Tab. 9.8.4

IE3	Moteurs GMK	Pôl.	P _N	n _N min ⁻¹	T _N Nm	I _{N (400} v)	COSφ 100%	100%	η 75 %	50%			$\frac{T_{max}}{T_{N}}$	J Kg m²	Poids Kg
	180 L	8	11	730	144,0	23,9	0,75	88,6	87,7	85,4	6,1	2,2	2,4	0,2600	217
	200 La	8	15	730	196,2	31,8	0,76	89,6	88,9	86,6	6,0	2,1	2,3	0,4100	290
50Hz	225 S	8	18,5	740	239,0	39,0	0,76	90,1	89,0	86,9	6,4	2,2	2,4	0,5800	320
400V	225 M	8	22	740	284,0	44,9	0,78	90,6	89,5	87,7	6,5	2,1	2,5	0,6400	355
04 \	250 M	8	30	740	387,0	60,0	0,79	91,3	90,4	88,6	6,2	2,2	2,4	0,9800	460
	280 S	8	37	740	478,0	73,6	0,79	91,8	90,9	89,4	6,4	2,1	2,3	1,9200	570
	280 M	8	45	740	581,0	89,2	0,79	92,2	91,4	90,1	6,4	2,1	2,3	2,250	635

• 9.9 DONNÉES DIMENSIONNELLES JMK

SÉRIE JMK IE3 Tab. 9.9.1


М	lote	urs		D	imens	ions p	rincipa	iles					F	Pieds								Bride	e		
	JMF	(AC	AD	н	HD	Z	LB	L	Α	В	C	AB	BB	AA	ВА	НА	K	IM	М	NJ6	P	LA	Т	S
80		28	156	139	80	219	136	335	375	125	100	50	161	130	35	35	11	9	B5	165	130	200	10	3,5	N°4 12
80		20	סכו	159	80	219	130	222	3/3	125	100	50	101	150	33	35	"	9	B14	100	80	120		3	N°4 M6
	s		47/	4/5	00	225	467	340	390	4/0	100	F.C.	47/	130	25	22	42	40	B5	165	130	200	12	3,5	N°4 12
90	L	28	174	145	90	235	164	398	448	140	125	56	174	155	35	33	12	10	B14	115	95	140		3	N°4 M8
100		28	198	158	100	258	180	415	475	160	140	63	197	175	50	42	15	12	B5	215	180	250	13	4	N°4 15
100		20	198	156	100	256	160	415	4/5	160	140	65	197	1/5	50	42	15	IZ	B14	130	110	160		3,5	N°4 M8
112		28	221	174	112	200	100	(5)	512	100	1/0	70	220	100	55	42	15	12	B5	215	180	250	14	4	N°4 15
112		28	221	1/4	HZ	286	188	452	512	190	140	/0	220	180	55	42	15	12	B14	130	110	160		3,5	N°4 M8
422	s		250	407	422	220	225	495	575	246	140	00	252	175	F0	//0	45	42	B5	265	230	300	14	4	N°4 15
132	М	28	258	197	132	329	225	535	615	216	178	89	252	213	58	40	15	12	B14	165	130	200		3,5	N°4 M10
450	М		24/	225	160	205	260	625	7/5	25/	210	400	204	202	F./	00	47	45	B5	300	250	350	15	5	N°4 20
160	L	28	314	235	160	395	260	635	745	254	254	108	291	293	54	90	17	15	B14	215	180	250		4	N°4 M12

SÉRIE JMK IE3 Tab. 9.9.2

					Воι	ıt d'ar	bre					Joint o	d'arbre	9			Boî	te à bornes			
	Mote JM						La	ngue	tte	C	ôté bi	ide		té ou d anden		Bornier	Pres.	Liège			
			D	DB	Е	GA	F	GD	ЕВ	Øi	Øe	Н	Øi	Øe	Н	N°-Ø	N°-KK	N°-XX	VA	VB	R
80		28	19	М6	40	21,5	6	6	32	20	35	7	20	35	7	6-M4	1-M20x1,5	1-M20x1,5	28	140	105
90	S L	28	24	M8	50	27	8	7	40	25	37	7	25	40	7	6-M4	2-M25x1,5	2-M25x1,5	32	140	105
100	L	28	28	M10	60	31	8	7	50	30	42	7	30	52	7	6-M5	2-M25x1,5	2-M25x1,5	27	140	105
112	М	28	28	M10	60	31	8	7	50	30	44	7	35	52	7	6-M5	2-M25x1,5	2-M25x1,5	30	160	115
132	S M	28	38	M12	80	41	10	8	70	40	58	8	40	62	7	6-M5	2-M32x1,5	2-M32x1,5	52	160	115
160	M L	28	42	M16	110	45	12	8	90	45	65	8	45	75	10	6-M6	2-M40x1,5		65	143	146

• 9.10 DONNÉES DIMENSIONNELLES GMK

SÉRIE GMK IE3 Tab. 9.10.1

M	1ote	urs		D	imens	ions p	rincipa	les					ı	Pieds								Bride	!		
	GM	K	AC	AD	Н	HD	Z	LB	L	Α	В	c	AB	ВВ	AA	СВ	НА	К	IM	М	NJ6	Р	LA	Т	S
400	М	2-4	255	267	400		260	690	800	270	241	474	250	311	70	25	22	45		200	250	250	45	_	NO. 40
180	L	4-6-8	355	267	180	447	260	730	840	279	279	121	350	349	70	35	22	15	B5	300	250	350	15	5	N°4 19
200	L	28	397	299	200	499	260	800	910	318	305	133	390	370	70	32	25	18	В5	350	300	400	17	5	N°4 19
225	S	48	446	322	225	547	260	805	945	356	286	149	432	370	75	46	28	19	B5	400	350	450	20	5	N°8 19
225	М	28	446	322	225	547	260	830	940	356	311	149	433	395	75	46	28	19	B5	400	350	450	20	5	N°8 19
250	М	28	485	358	250	608	260	920	1060	406	349	168	486	445	80	55	30	24	B5	500	450	550	22	5	N°8 19
200	S	2.0	F / 7	207	200	667	220	1100	1240	,,,,	368	400	F/F	485	0.5	60	25	2/		500	/50	550	22	_	N100 40
280	М	28	547	387	280	667	320	1150	1290	457	419	190	545	536	85	69	35	24	B5	500	450	550	22	5	N°8 19

SÉRIE GMK IE3 Tab. 9.10.2

					Во	ut d'a	rbre					Joint d	l'arbre	è			Boît	e à bornes			
1	Mot GN	eurs ⁄IK					La	ngue	tte	C	ôté bi	ide		té ou d anden		Bornier	Presse-	étoupe			
			D	DB	Е	GA	F	GD	ЕВ	Øi	Øe	Н	Øi	Øe	Н	N°-Ø	N°-KK	N°-XX	VA	VB	R
180		2-4-6-8	48	M16	110	51,5	14	9	100	55	75	8/12	55	90	8/10	6-M6	2-M40x1,5	1-M16x1,5	82	158	185
200		2-4-6-8	55	M20	110	59	16	10	100	60	80	8/12	60	90	8/10	6-M8	2-M50x1,5	1-M16x1,5	92	187	224
225	s	4-8	60	M20	140	64	18	11	125	65	90	10/12	65	90	8/10	6-M8	2-M50x1,5	1-M16x1,5	95	187	224
225		2	55	M20	110	59	16	10	100	60	80	8/12	65	90	8/10	C MO	2 MEO.4 E	1 MIC-4 F	٥٢	107	22/
225	М	4-6-8	60	MZU	140	64	18	11	125	65	90	10/12	65	90	8/10	6-M8	2-M50x1,5	1-M16x1,5	95	187	224
250		2	60	M20	140	64	18	11	125	65	90	10/12	70	90	8/10	C 1410	2 MC2-4 F	1 M46.4 F	88	220	202
250		4-6-8	65	M20	140	69	18	11	125	70	90	10/12	70	90	8/10	6-M10	2-M63x1,5	1-M16x1,5	88	238	283
200		2	65	M20	1/0	69	18	11	125	70	90	10/12	70	90	8/10	C 1410	2 MC2-4 E	1 MIC-4 F	٥٥	220	202
280		4-6-8	75	IVI2U	140	79,5	20	12	125	85	110	10/12	70	90	8/10	6-M10	2-M63x1,5	1-M16x1,5	96	238	283

partenaire quel est les soutiens dans votre travail.

seipee.it

selpee[®]

MOTEURS AUTO-FREINANTS IE2

Grandeur JMK

63 ~ 80

Puissance JMK

0.12 ~ 0.55 kW

Polarité JMK

2, 4, 6, 8 pôles

Secteurs d'utilisation

• 9.11 DONNÉES ÉLECTRIQUES JMK IE2

SÉRIE JMK 2 POLÉS IE2

Tab. 9.11.1

IE2	Mot. JMK	Pôl.	P _N	n _N min ⁻¹	T _N	l _{N (400} v) A	COSφ 100%	100%	η 75 %	50%		T _s T _N	$\frac{T_{max}}{T_{N}}$	J Kg m²	Poids Kg
7	63 a	2	0,18	2710	0,63	0,57	0,75	60,4	61,2	57,5	4,4	3,1	3,2	0,00024	6,0
- 50	63 b	2	0,25	2710	0,88	0,71	0,78	64,8	65,5	62,3	4,5	2,8	3,0	0,00031	6,4
400 V	63 c*	2	0,37	2730	1,29	0,97	0,79	69,5	70,3	66,8	4,4	3,0	3,1	0,00036	6,9
230 / 7	71 a	2	0,37	2730	1,29	0,97	0,79	69,5	70,3	66,8	5,6	2,4	3,1	0,00049	8,2
	71 b	2	0,55	2760	1,90	1,36	0,79	74,1	74,8	72,1	5,5	2,8	3,2	0,00057	8,8
7 ✓	71 c*	2	0,75	2760	2,59	1,71	0,82	77,4	77,9	74,3	5,6	2,8	2,9	0,00068	9,5

SÉRIE JMK 4 POLÉS IE2

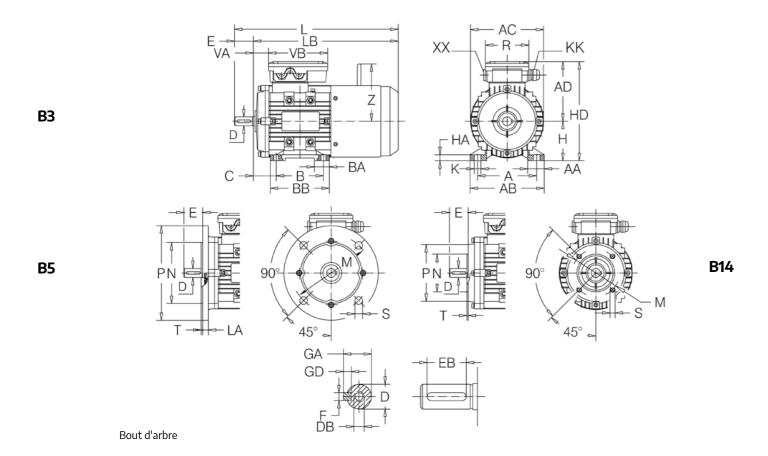
Tab. 9.11.2

IE2	Mot. JMK	Pôl.	P _N	n _N min ⁻¹	T _N Nm	I _{N (400} v) A	COSφ 100%	100%	η 7 5%	50%		T _s	$\frac{T_{max}}{T_{N}}$	J Kg m²	Poids Kg
N	63 a	4	0,12	1350	0,85	0,46	0,64	59,1	59,8	56,4	3,1	2,4	2,8	0,00028	6,4
50 Hz	63 b	4	0,18	1350	1,27	0,62	0,65	64,7	65,3	62,5	3,3	2,5	2,6	0,00035	6,8
>	63 c*	4	0,25	1350	1,77	0,80	0,66	68,5	69,5	66,2	3,4	2,5	2,5	0,00042	7,3
230 / 400 V	71aa	4	0,25	1350	1,77	0,73	0,72	68,5	69,3	65,6	4,4	2,6	2,7	0,00057	8,6
- 230	71 b	4	0,37	1370	2,58	0,99	0,74	72,7	73,3	69,3	4,6	3,0	3,0	0,00073	9,0
<i>≻</i> / □	71 c*	4	0,55	1380	3,81	1,37	0,75	77,1	77,8	74,3	4,5	2,8	2,9	0,00094	10,8
7	80 a	4	0,55	1370	3,83	1,37	0,75	77,1	77,8	74,3	5,4	2,3	2,6	0,00190	12,5

SÉRIE JMK 6 POLÉS IE2

Tab. 9.11.3

IE2	Mot.	Pôl.	P_{N}	n _N	T _N	l _{N (400} v)	COSφ		η		_ I _{s_}		T _{max}	1	Poids
	JMK		kW	min-1	Nm	A	100%	100%	75%	50%	I _N	T _N	T _N	Kg m²	Kg
	63 a	6	0,12	850	1,35	0,55	0,62	50,6	51,6	48,5	2,2	2,0	2,1	0,00053	7,0
Z T	71 a	6	0,18	880	1,95	0,70	0,66	56,6	57,4	53,2	2,8	2,0	2,4	0,00110	8,5
400V 50Hz	71 b	6	0,25	900	2,65	0,84	0,70	61,6	62,4	58,3	3,0	2,1	2,3	0,00120	9,0
400	71 c*	6	0,37	900	3,93	1,13	0,70	67,6	68,6	64,3	3,1	2,2	2,4	0,00130	9,7
◁	80 a	6	0,37	900	3,93	1,13	0,70	67,6	68,6	64,3	4,1	2,1	2,5	0,00165	14
	80 b	6	0,55	900	5,84	1,51	0,72	73,1	73,9	70,1	4,2	2,1	2,4	0,00210	15


SÉRIE JMK 8 POLÉS IE2

Tab. 9.11.4

IE2	Mot. JMK	Pôl.	P _N	n _N min ⁻¹	T _N	I _{N (400} v) A	COSφ 100%	100%	η 75 %	50%	I _s	T _s T _N	T _{max}	J Kg m²	Poids Kg
	71 b	8	0,12	690	1,66	0,74	0,59	39,8	40,6	36,5	2,0	1,9	1,9	0,00140	9,4
50Hz	80 a	8	0,18	680	2,53	0,93	0,61	45,9	46,7	42,1	3,1	2,0	2,5	0,00250	14,5
400V	80 b	8	0,25	680	3,51	1,17	0,61	50,6	51,6	47,5	3,3	2,2	2,5	0,00270	15
D4 40	90 S	8	0,37	680	5,20	1,51	0,63	56,1	56,8	53,4	2,9	1,6	1,9	0,00390	19
	90 La	8	0,55	680	7,72	1,98	0,65	61,7	62,3	58,4	3,0	1,8	1,9	0,00470	22

• 9.12 DONNÉES DIMENSIONNELLES JMK

SÉRIE JMK A30-33 IE2

Tab. 9.12.1

N	/lote	urs		Di	mens	ions pr	incipa	les					P	ieds								Brid	le		
	JM	K	AC	AD	Н	HD	Z	LB	L	Α	В	C	AB	ВВ	AA	ВА	НА	K	IM	М	NJ6	Р	LA	Т	S
63		26	122	113	63	176	107	250	273	100	80	40	121	103	28	26	9	7	B5	115	95	140	9	3	N°4 9
63		20	IZZ	115	65	1/6	107	250	2/3	100	80	40	IZI	103	20	26	9	/	B14	75	60	90		2,5	N°4 M5
													400					_	B5	130	110	160	9	3,5	N°4 10
71		28	140	118	71	189	116	290	320	112	90	45	133	106	28	23	10	7	B14	85	70	105		2,5	N°4 M6
00			45.0	420	00	240	426	225	275	425	400		464	420	25	25	44	0	В5	165	130	200	10	3,5	N°4 12
80		28	156	139	80	219	136	335	375	125	100	50	161	130	35	35	11	9	B14	100	80	120		3	N°4 M6
90	s	28	174	1.15	90	235	164	325	375	140	100	56	174	130	35	33	12	10	В5	165	130	200	12	3,5	N°4 12
90	L	28	1/4	145	90	235	104	375	425	140	125	36	174	155	35	33	12	10	B14	115	95	140		3	N°4 M8

SÉRIE JMK A31 IE2

Tab. 9.12.2

					Βοι	ıt d'arl	bre					Joint o	l'arbre	÷			Boît	te à bornes			
		oteurs JMK D DB E				La	ingue	tte	C	ôté bi	ride		té ou d anden		Bornier	Pres.	Liège				
			D	DB	Ε	GA	F	GD	ЕВ	Øi	Øe	н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
63	М	26	11	M4	23	12,5	4	4	16	12	24	7	15	26	7	6-M4	1-M20x1,5	1-M20x1,5	15	119	94
71	М	28	14	M5	30	16	5	5	22	15	25	7	17	32	5	6-M4	1-M20x1,5	1-M20x1,5	23	119	94
80	М		19	М6	40	21,5	6	6	32	20	35	7	20	35	7	6-M4	1-M20x1,5	1-M20x1,5	28	140	105
90	S	28	24	M8	50	27	8	7	40	25	37	7	25	40	7	6-M4	2-M25x1.5	2-M25x1,5	32	140	105
90	L	28	Z4	IMB	50	21	8	/	40	25	5/	/	25	40	/	b-M4	Z-IVIZ5X I,5	Z-1V1Z5X1,5	52	140	105

new energy for your business.

seipee.it

MOTEURS AUTO-FREINANTS

Grandeur	ЈМК	Grandeur	GMK
63 ~ 160		150 ~ 225	
Puissance	ЈМК	Puissance	GMK
0.12 ~ 18.5 kW		15 ~ 90 kW	
<u>Polarité</u>	ЈМК	<u>Polarité</u>	GMK
2, 4, 6, 8 pôles		2, 4, 6, 8 pôles	

Secteurs d'utilisation

• 9.13 DONNÉES ÉLECTRIQUES JMK

Tous les moteurs de cette section du catalogue sont exclusivement destinés à l'exportation en dehors de l'Espace économique européen. Par conséquent, le transfert des moteurs susmentionnés par Seipee est effectué sous la responsabilité exclusive de l'acheteur, qui assume toutes les obligations légales qui suivent, exemptant complètement Seipee de toute attribution

de responsabilité directe ou indirecte à l'égard de la législation en vigueur.

Sur le côté opposé de la commande il y a un trou fileté des dimensions suivantes :

JMK 63 = M4x12mm, JMK 71 = M5x15mm, JMK 80 = M6x15mm, JMK 90-100-112-132 = M8x25mm, JMK 160 = M10x25mm, GMK 180...280 = M10x25mm

SÉRIE JMK 2 POLÉS

Tab. 9.13.1

IE1	Mot. JMK	Pôl.	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	Poids Kg
			kW	min ⁻¹	Nm	Α		100%	75%	50%	I _N	T _N	T _N	
	63 a	2	0,18	2730	0,63	0,53	0,76	64	60	55	4,2	2,9	3,1	5,8
	63 b	2	0,25	2730	0,87	0,69	0,77	68	63	57	4,5	2,8	2,9	6,2
	63 c*	2	0,37	2720	1,30	0,98	0,79	69	65	58	4,1	2,9	3,0	6,7
	71 a	2	0,37	2770	1,28	0,94	0,81	70	67	61	5,4	2,9	3,1	8,1
	71 b	2	0,55	2770	1,90	1,31	0,83	73	69	63	5,2	2,9	3,0	8,7
50 Hz	71 c*	2	0,75	2740	2,61	1,73	0,83	75	70	63	5,5	2,7	2,8	9,4
	80 a	2	0,75	2800	2,56	1,85	0,80	73,6	72,0	67,7	5,6	2,8	2,9	12,3
- 230 / 400 V	80 b	2	1,1	2820	3,72	2,44	0,85	76,4	76,1	73,0	5,7	2,8	3,0	13,1
30 / 7	80 c*	2	1,5	2810	5,10	3,2	0,86	78,4	78,4	75,1	5,8	3,0	3,1	14,4
	90 S	2	1,5	2860	5,01	3,2	0,84	81,0	80,9	77,3	5,9	3,0	3,2	16,8
7 ✓	90 La	2	2,2	2840	7,40	4,6	0,85	81,3	80,8	78,9	6,1	2,9	3,1	18,9
	90 Lb*	2	3	2830	10,1	6	0,86	84,0	83,8	81,0	5,8	3,2	3,3	19,7
	100 La	2	3	2860	10,0	6,1	0,86	82,9	82,7	80,6	6,3	2,8	3,0	26,1
	100 Lb	2	4	2850	13,4	8,05	0,87	82,8	82,5	80,1	6,1	3,0	3,1	29,5
	112 Ma	2	4	2880	13,3	8	0,85	84,5	83,8	81,3	6,6	2,8	2,9	37,5
	112 Mb*	2	5,5	2890	18,2	10,7	0,87	86,0	86,1	84,8	6,9	3,2	3,3	40,5
	132 Sa	2	5,5	2900	18,1	10,6	0,87	86,0	86,0	84,2	7,1	2,9	3,1	58,5
¥	132 Sb	2	7,5	2900	24,7	14,1	0,88	87,4	87,5	86,1	7,0	3,2	3,4	62,5
- 50 Hz	132 Ma*	2	9,25	2910	30,4	17,1	0,89	87,8	87,7	85,4	7,3	2,9	3,2	65,5
	132 Mb*	2	11	2900	36,2	20,4	0,89	88,0	88,2	86,9	7,7	3,2	3,4	71,5
- 400 V	160 Ma	2	11	2930	35,9	20,4	0,88	88,6	88,3	86,8	7,2	2,9	3,4	93
◁	160 Mb	2	15	2920	49,1	27,3	0,89	89,5	89,5	87,6	7,0	2,8	3,2	102
	160 L	2	18,5	2930	60,3	32,9	0,90	90,5	90,1	88,6	7,4	2,7	3,1	109

SÉRIE JMK 4 POLÉS Tab. 9.13.2

IE1	Mot.	Pôl.	$\mathbf{P}_{\mathbf{N}}$	n _N	T_N	I _{N (400 V)}	COSφ		η		Is	T _s	T_{max}	Poids
	JMK		kW	min ⁻¹	Nm	Α		100%	75%	50%	I _N	T _N	T _N	Kg
	63 a	4	0,12	1330	0,86	0,50	0,59	59	53	47	2,7	2,3	2,4	5,9
50 Hz	63 b	4	0,18	1350	1,27	0,72	0,60	60	54	49	2,9	2,3	2,3	6,5
1	63 c*	4	0,25	1340	1,78	0,91	0,64	62	57	52	2,7	2,4	2,4	7
00	71 a	4	0,25	1360	1,76	0,85	0,65	65	61	57	3,5	2,8	2,8	8,1
230 / 400 V	71 b	4	0,37	1370	2,58	1,1	0,71	68	66	60	3,4	2,5	2,6	8,9
1	71 c*	4	0,55	1370	3,83	1,63	0,72	68	65	62	3,6	2,4	2,4	9,6
\	80 a	4	0,55	1390	3,78	1,55	0,73	70	68	63	3,8	2,3	2,4	12,3
										Le	tableau co	ontinue à l	a page sui	ivante

SÉRIE JMK 4 POLÉS Tab. 9.13.2

IE1	Mot. JMK	Pôl.	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s		T _{max}	Poids Kg
	JIVIK		kW	min-1	Nm	Α		100%	75%	50%	I _N	T_N	T _N	кg
	80 b	4	0,75	1380	5,19	2	0,74	73,2	71,1	65,9	4,0	2,2	2,3	13,1
	80 c*	4	1,1	1390	7,56	2,8	0,76	75,0	74,2	72,0	4,0	2,3	2,3	14,4
	90 S	4	1,1	1400	7,50	2,75	0,76	76,3	75,9	74,3	4,8	2,9	3,0	17,2
50 Hz	90 La	4	1,5	1400	10,2	3,55	0,78	78,6	78,3	75,5	5,0	3,0	3,0	19
V - 5(90 Lb*	4	1,85	1390	12,7	4,15	0,82	78,7	78,8	75,3	4,9	2,6	2,7	20,2
- 230 / 400 V -	90 Lc*	4	2,2	1360	15,4	4,95	0,84	76,8	77,1	75,0	4,1	2,4	2,5	21,8
- 230	100 La	4	2,2	1420	14,8	5,00	0,77	82,8	81,5	79,3	5,6	2,7	3,0	26,3
7/△	100 Lb	4	3	1430	20,0	6,50	0,79	84,3	84,2	81,9	6,4	3,1	3,2	29,5
	100 Lc+	4	4	1410	27,1	8,47	0,82	83,1	83,4	82,0	6,5	3,1	3,2	30
	112 Ma	4	4	1435	26,6	8,35	0,82	84,3	84,5	83,0	5,8	2,5	2,7	38,5
	112 Mc*	4	5,5	1430	36,7	11,3	0,82	85,0	85,2	84,6	6,0	2,7	2,8	42
	132 S	4	5,5	1440	36,5	11,2	0,83	86,2	85,4	84,1	6,9	2,6	3,1	60
	132 Ma	4	7,5	1440	49,7	14,7	0,84	87,9	87,6	86,2	7,3	3,6	3,7	67
- 50 Hz	132 Mb	4	9,25	1445	61,1	18,2	0,83	88,2	88,1	86,9	7,6	3,0	3,4	71
· · > 0	132 Mc*	4	11	1440	72,9	21	0,86	88,4	88,4	87,3	7,1	2,9	3,1	74
Δ-400 V	160 M	4	11	1460	71,9	21,3	0,84	88,5	88,0	87,0	6,7	2,4	2,4	102
7	160 L	4	15	1460	98,1	28,5	0,85	89,6	89,5	88,6	7,3	2,2	2,3	110
	160 lb	4	18,5	1460	121,0	34,8	0,86	89,3	89,1	88,2	6,3	2,0	2,5	116

SÉRIE JMK 6 POLÉS Tab. 9.13.3

IE1	Mot.	Pôl.	P_{N}	n _N	T _N	N (400 V)	COSφ		η		I _s	T _s	T_{max}	Poids
	JMK	roi.	kW	min-1	Nm	Α		100%	75%	50%	\overline{I}_{N}	T _N	T _N	Кд
	63 b	6	0,12	870	1,32	0,63	0,60	46	42	39	3,0	2,0	2,1	6,5
	71 a	6	0,18	875	1,96	0,75	0,65	53	49	45	2,5	2,6	2,6	8,2
50 Hz	71 b	6	0,25	885	2,70	0,93	0,66	59	56	51	2,7	2,5	2,5	8,9
- 50	71 c*	6	0,30	870	3,29	1,1	0,68	58	57	52	2,5	2,4	2,4	9,6
	80 a	6	0,37	910	3,88	1,18	0,70	65	64	57	3,0	2,0	2,1	13,8
230 / 400 V	80 b	6	0,55	905	5,80	1,65	0,72	67	66	59	3,2	2,1	2,2	14,8
	90 S	6	0,75	920	7,78	2,2	0,70	70,2	70,4	66,0	3,4	2,1	2,2	17,5
- Y/∆	90 La	6	1,1	920	11,4	2,95	0,74	73,0	73,0	69,0	3,8	2,2	2,4	19,5
⊲	90 Lb*	6	1,5	910	15,7	4	0,74	73,5	72,8	68,3	3,6	2,2	2,2	21
	100 L	6	1,5	930	15,4	3,8	0,76	75,4	75,8	72,9	4,0	2,2	2,4	29
	112 M	6	2,2	930	22,6	5,5	0,74	77,9	78,8	76,3	5,2	2,6	2,7	40
7	132 S	6	3	960	29,8	7	0,76	82,7	82,5	80,0	5,7	2,2	2,5	61
50Hz	132 Ma	6	4	960	39,8	9	0,76	84,5	84,7	83,0	5,0	2,2	2,3	68
- 70	132 Mb	6	5,5	955	55,0	11,7	0,79	85,4	85,4	83,9	5,7	2,6	2,8	72
Δ - 400V	160 M	6	7,5	970	73,8	16,1	0,78	86,2	86,1	83,5	6,5	2,1	2,2	103
⊲	160 L	6	11	970	108	22,9	0,79	87,6	87,8	86,0	6,4	2,0	2,1	111

SÉRIE JMK 8 POLÉS Tab. 9.13.4

IE1	Mot.	Pôl.	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	Poids
	JMK	PUI.	kW	min-1	Nm	Α		100%	75%	50%	\overline{I}_{N}	T _N	T _N	Kg
	71 a	8	0,09	645	1,33	0,42	0,60	43	40	36	1,8	1,9	1,9	8,0
	71 b	8	0,12	640	1,79	0,7	0,56	44	40	36	1,9	1,9	1,9	9,3
50 Hz	71 c	8	0,18	670	2,57	0,96	0,54	50	46	40	2,0	1,9	1,9	10
1	80 a	8	0,18	670	2,57	0,96	0,54	50	46	40	2,0	1,9	1,9	14
230 / 400V	80 b	8	0,25	640	3,73	1,12	0,58	56	52	46	1,9	1,9	1,9	14,6
30 /	90 S	8	0,37	690	5,12	1,45	0,61	60	59	53	2,8	2,3	2,5	17,8
1	90 L	8	0,55	695	7,56	2,15	0,60	61	60	54	2,9	2,2	2,4	20,5
Λ/√	100 La	8	0,75	695	10,3	2,4	0,65	69	68	61	3,0	2,1	2,2	28
	100 Lb	8	1,1	695	15,1	3,4	0,67	70	69	63	3,3	2,2	2,3	30
	112 M	8	1,5	700	20,5	4,4	0,69	71	70	65	3,4	2,1	2,2	41
Į.	132 S	8	2,2	715	29,4	5,9	0,68	79,0	79,1	77,0	4,9	2,4	2,5	62
50Hz	132 M	8	3	710	40,3	7,4	0,73	81,1	80,7	79,2	4,8	2,6	2,7	70
>0	160 Ma	8	4	710	53,8	10,5	0,68	81,0	80,3	76,8	5,6	2,6	3,6	100
- 400V	160 Mb	8	5,5	710	74,0	13,6	0,71	82,0	81,4	77,8	5,5	2,5	2,8	111
◁	160 L	8	7,5	710	100,4	18,6	0,70	83,0	82,4	78,8	5,7	2,6	2,8	128

^{*} Correspondance puissance ou puissance/amplitude non normalisée

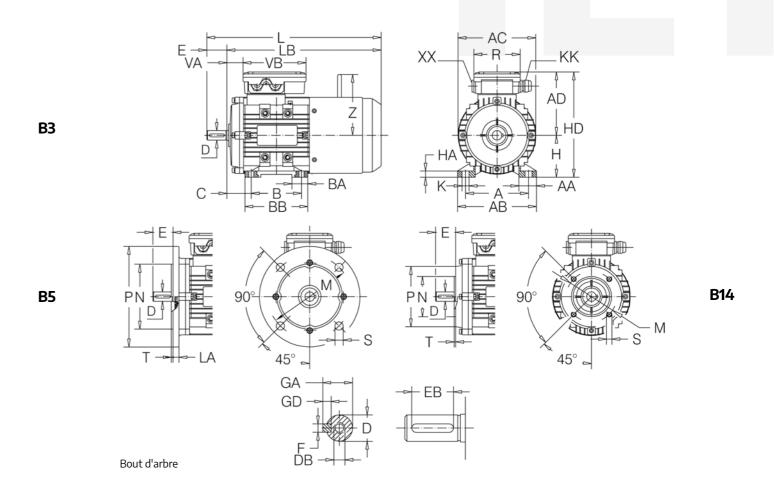
• 9.14 DONNÉES ÉLECTRIQUES GMK

SÉRIE GMK 2 POLÉS Tab. 9.14.1

IE1	Mot.	Pôl.	$\mathbf{P}_{\mathbf{N}}$	n _N	T _N	I _{N (400 V)}	COSφ		η		Is	T _s	T _{max}	Poids
	GMK	101.	kW	min-1	Nm	Α		100%	75%	50%	I _N	T_{N}	T_{N}	Kg
	180 M	2	22	2940	71,5	38,9	0,90	90,8	90,6	90,3	7,0	2,1	2,3	189
Z	200 La	2	30	2950	97,1	52,7	0,90	91,5	91,5	91,2	6,9	2,0	2,5	278
50 F	200 Lb	2	37	2950	119,8	64,5	0,90	92,2	92,3	91,8	7,2	2,0	2,4	290
>	225 M	2	45	2960	145,2	78,2	0,90	92,6	92,5	91,8	7,3	2,2	2,4	352
400V	250 M	2	55	2965	177,0	95,9	0,89	93,1	93,0	92,0	7,1	2,0	2,3	437
◁	280 S	2	75	2970	241,0	130	0,90	92,7	92,7	91,6	7,3	2,2	2,4	540
	280 M	2	90	2970	289,0	153	0,91	93,0	93,0	91,8	7,0	2,0	2,3	610

SÉRIE GMK 4 POLÉS Tab. 9.14.2

IE1	Mot.	Pôl.	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		Is	T _s	T _{max}	Poids
	GMK	. 01.	kW	min ⁻¹	Nm	Α		100%	75%	50%	I _N	T _N	T _N	zKg
	180 M	4	18,5	1460	121,0	34,6	0,86	90,2	90,2	91,1	6,7	2,1	2,8	188
	180 L	4	22	1470	142,9	41,0	0,85	91,2	91,1	91,9	7,5	2,2	3,0	206
HZ O	200 L	4	30	1470	194,9	55,0	0,86	91,7	92,3	92,4	6,6	2,3	2,5	305
50	225 S	4	37	1475	239,5	66,4	0,87	92,3	92,4	93,0	7,2	2,3	2,6	335
400V	225 M	4	45	1475	291,3	80,4	0,87	92,7	92,7	93,2	7,0	2,2	2,4	362
∇	250 M	4	55	1480	355,0	98,0	0,87	93,4	93,5	93,0	7,1	2,3	2,6	460
	280 S	4	75	1480	484,0	134	0,87	92,7	92,7	92,2	6,6	2,3	2,5	555
	280 M	4	90	1480	581,0	161	0,87	93,0	93,0	92,5	6,2	2,2	2,4	651


SÉRIE GMK 6 POLÉS Tab. 9.14.3

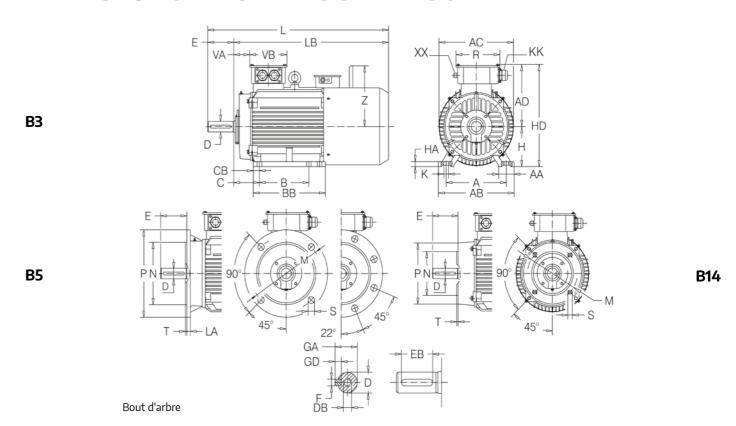
IE1	Mot.	Pôl.	P _N	n _N	T _N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	Poids
	GMK	PUI.	kW	min ⁻¹	Nm	Α		100%	75%	50%	\overline{I}_{N}	T _N	T _N	Kg
	180 L	6	15	970	147,7	30,0	0,81	88,6	88,7	88,3	6,9	2,1	2,2	202
	200 La	6	18,5	980	180,3	36,6	0,82	89,2	89,3	88,1	6,7	2,1	2,2	270
- 50Hz	200 Lb	6	22	980	214,4	42,4	0,83	90,0	90,2	89,3	6,6	2,1	2,2	288
>	225 M	6	30	980	292,3	56,3	0,84	91,4	91,5	90,8	6,7	2,0	2,1	337
- 400	250 M	6	37	980	361,0	67,4	0,86	91,8	91,9	91,0	6,9	2,1	2,2	442
◁	280 S	6	45	980	438,0	82,6	0,86	91,4	91,4	90,6	6,5	2,1	2,2	535
	280 M	6	55	980	536,0	100	0,86	91,9	91,9	91,0	6,6	2,0	2,1	585

SÉRIE GMK 8 POLÉS Tab. 9.14.4

IE1	Mot.	Pôl.	\mathbf{P}_{N}	n _N	T_N	I _{N (400 V)}	COSφ		η		I _s	T _s	T _{max}	Poids
	GMK	PUI.	kW	min ⁻¹	Nm	Α		100%	75%	50%	I _N	T _N	T _N	Кд
	180 L	8	11	730	143,9	23,8	0,77	87,2	87,6	87,1	5,7	1,9	2,2	184
¥	200 L	8	15	730	196,2	32,4	0,75	88,8	89,0	88,6	6,0	2,0	2,2	288
- 50Hz	225 S	8	18,5	730	242,0	39,0	0,76	90,1	90,1	89,7	6,2	1,9	2,2	314
>	225 M	8	22	730	287,8	45,0	0,78	90,5	90,8	90,1	6,4	2,0	2,0	337
- 400	250 M	8	30	735	390,0	60,8	0,79	90,2	90,4	90,0	6,1	1,9	2,1	440
◁	280 S	8	37	735	481,0	73,9	0,79	91,5	91,5	91,0	6,5	1,9	2,3	517
	280 M	8	45	735	585,0	89,4	0,79	92,0	92,0	91,5	6,4	2,0	2,2	583

• 9.15 DONNÉES DIMENSIONNELLES JMK

SÉRIE JMK IE1 Tab. 9.15.1


M	1ote	urs		Dir	mensi	ions pr	incipa	les					F	Pieds								Brid	e		
	JMI	<	AC	AD	Н	HD	Z	LB	L	Α	В	C	AB	ВВ	AA	ВА	НА	K	IM	М	NJ6	P	LA	Т	S
63		26	122	113	63	176	107	250	273	100	80	40	121	103	28	26	9	7	B5	115	95	140	9	3	N°4 9
65		26	IZZ	115	65	1/6	107	250	2/3	100	80	40	IZI	103	26	26	9	/	B14	75	60	90		2,5	N°4 M5
			4/0	440	74	400	44.5	200	220	440	00		422	10.5	20	22	10	_	B5	130	110	160	9	3,5	N°4 10
71		28	140	118	71	189	116	290	320	112	90	45	133	106	28	23	10	7	B14	85	70	105		2,5	N°4 M6
00		2.0	15.0	120	00	240	126	245	255	125	100	F0	101	120	25	25	11	9	B5	165	130	200	10	3,5	N°4 12
80		28	156	139	80	219	136	315	355	125	100	50	161	130	35	35	11	9	B14	100	80	120		3	N°4 M6
00	s	2.0	174	145	90	235	164	325	375	140	100	56	174	130	35	33	12	10	В5	165	130	200	12	3,5	N°4 12
90	L	28	1/4	145	90	235	164	375	425	140	125	56	1/4	155	35	33	IZ	10	B14	115	95	140		3	N°4 M8
																			B5	215	180	250	13	4	N°4 15
100		28	198	158	100	258	180	410	470	160	140	63	197	175	50	42	15	12	B14	130	110	160		3,5	N°4 M8
112		28	221	174	112	286	188	412	472	190	140	70	220	180	55	42	15	12	В5	215	180	250	14	4	N°4 15
112		20	221	1/4	112	200	100	412	4/2	190	140	70	220	180	55	42	IS	IZ	B14	130	110	160		3,5	N°4 M8
	s							460	540		140			175					B5	265	230	300	14	4	N°4 15
132	М	28	258	197	132	329	225	500	580	216	178	89	252	213	58	40	15	12	B14	165	130	200		3,5	N°4 M10
160	М	28	314	235	160	395	260	615	725	254	210	108	291	293	54	90	17	15	B5	300	250	350	15	5	N°4 20
.00	L	20	514	233	100	333	200	OIS	,23	234	254	100	231	233	34	50	17	را	B14	215	180	250		4	N°4 M12

SÉRIE JMK IE1 Tab. 9.15.2

					Воι	ıt d'ar	bre					Joint o	l'arbre	2			Boît	te à bornes			
ا	Mote JMI						La	ngue	tte	C	ôté bi	ide		té ou o anden		Bornier	Pres.	Liège			
			D	DB	Е	GA	F	GD	ЕВ	Øi	Øe	н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
63	М	26	11	M4	23	12,5	4	4	16	12	24	7	15	26	7	6-M4	1-M20x1,5	1-M20x1,5	15	119	94
71	М	28	14	M5	30	16	5	5	22	15	25	7	17	32	5	6-M4	1-M20x1,5	1-M20x1,5	23	119	94
80	М	28	19	М6	40	21,5	6	6	32	20	35	7	20	35	7	6-M4	1-M20x1,5	1-M20x1,5	28	140	105
90	S	28	24	M8	50	27	8	7	40	25	37	7	25	40	7	6-M4	2-M25x1,5	2-M25x1,5	32	140	105
	L																				
100	L	28	28	M10	60	31	8	7	50	30	42	7	30	52	7	6-M5	2-M25x1,5	2-M25x1,5	27	140	105
112	М	28	28	M10	60	31	8	7	50	30	44	7	35	52	7	6-M5	2-M25x1,5	2-M25x1,5	30	160	115
132	S	28	38	M12	80	41	10	8	70	40	58	8	40	62	7	6-M5	2-M32x1,5	2-M32x1,5	52	160	115
.52	М			1112			10		, 0		30	J	10	02	,	0 1/15	L I-ISEXI,S	2 1132X1,3	32	100	113
160	М	26	42	M16	110	45	12	8	90	45	65	8	45	75	10	6-M6	2-M40x1,5		65	143	146
130	L	20	42	14/10	110	45	12	3	50	45	05	0	+5	13	10	0-1410	2-14140X1,3		03	1-1-3	1-10

• 9.16 DONNÉES DIMENSIONNELLES GMK

SÉRIE GMK IE1 Tab. 9.16.1

,	Mote	eurs		Di	mensi	ions pi	rincipa	ales					Pi	eds								Bride			
	GM	IK	AC	AD	Н	HD	Z	LB	L	Α	В	c	AB	BB	AA	СВ	НА	К	IM	М	NJ6	Р	LA	Т	S
180	М	2-4	255	267	400		260	690	800	270	241	424	250	311	70	25	22	45		200	250	250	45	_	NO. 40
	L	4-6-8	355	267	180	447	260	730	840	279	279	121	350	349	70	35	22	15	B5	300	250	350	15	5	N°4 19
200	L	28	397	299	200	499	260	800	910	318	305	133	390	370	70	32	25	18	B5	350	300	400	17	5	N°4 19
225	s	48	446	322	225	547	260	805	945	356	286	149	432	370	75	46	28	19	B5	400	350	450	20	5	N°8 19
225	М	2	446	322	225	547	200	830	940	356	311	149	433	395	75	46	28	19	B5	400	350	450	20	5	N°8 19
225		4-6-8	446	322	225	54/	260	830	970	סככ	311	149	455	393	/5	46	20	19	БЭ	400	350	450	20	Э	N-8 19
250	М	28	485	358	250	608	260	920	1060	406	349	168	486	445	80	55	30	24	B5	500	450	550	22	5	N°8 19
280	s	28	547	387	280	667	320	1100	1240	457	368	190	545	485	85	69	35	24	B5	500	450	550	22	5	N°8 19
	М	0	J **/	301	200	337	320	1150	1290	.5/	419	.50	3 43	536						300	.50	330			1, 3 13

SÉRIE GMK IE1 Tab. 9.16.2

					Bou	t d'arl	ore					Joint d	'arbre	<u>:</u>			Bo	ite à bornes			
		teurs MK					La	ingue	tte	C	ôté bi	ride		té ou d anden		Bornier	Presse-	étoupe			
			D	DB	Ε	GA	F	GD	ЕВ	Øi	Øe	н	Øi	Øe	н	N°-Ø	N°-KK	N°-XX	VA	VB	R
180		2-4-6-8	48	M16	110	51,5	14	9	100	55	75	8/12	55	90	8/10	6-M6	2-M40x1,5	1-M16x1,5	82	158	185
200		2-4-6-8	55	M20	110	59	16	10	100	60	80	8/12	60	90	8/10	6-M8	2-M50x1,5	1-M16x1,5	92	187	224
225	s	48	60	M20	140	64	18	11	125	65	90	10/12	65	90	8/10	6-M8	2-M50x1,5	1-M16x1,5	95	187	224
225	М	2	55	M20	110	59	16	10	100	60	80	8/12	65	90	8/10	6-M8	2 MEO.4 E	1 M1C-4 F	95	187	224
225	IVI	4-6-8	60	IVIZU	140	64	18	11	125	65	90	10/12	65	90	8/10	6-1419	2-M50x1,5	1-M16x1,5	95	107	224
250		2	60	M20	4/0	64	18	11	125	65	90	10/12	70	90	8/10	6 140	2 MC2 45	4 146 45	88	220	202
250		4-6-8	65	MZU	140	69	18	11	125	70	90	10/12	70	90	8/10	6-M10	2-M63x1,5	1-M16x1,5	88	238	283
200		2	65	1420	4/0	69	18	11	125	70	90	10/12	70	90	8/10	6.140	2 MC2 45	4 146 45	0.0	220	202
280		4-6-8	75	M20	140	79,5	20	12		85	110	10/12	70	90	8/10	6-M10	2-M63x1,5	1-M16x1,5	96	238	283

TABLEAUX DE FREINS ET **SCHÉMAS DE CONNEXION**

9.17 TABLEAUX DE FREINS ET SCHÉMAS **DE CONNEXION**

Le frein agit en l'absence d'alimentation par la force exercée par les ressorts.

En retirant l'alimentation de l'électro-aimant, l'ancre mobile, par l'action des ressorts, presse le frein à disque claveté sur l'arbre moteur contre le bouclier arrière générant le moment de freinage.

En alimentant le frein, l'électro-aimant surmonte la force des ressorts, attire l'ancre mobile et libère le disque de frein et l'arbre moteur.

La construction à ressorts multiples et le freinage en l'absence de puissance rendent l'équipement sûr.

Les moteurs auto-freinants JMK et GMK peuvent être équipés de 3 types de freins :

- 1. Frein à courant alternatif: série TA..., GA...
- 2. Frein à courant continu: série TC..., GC...
- 3. Frein à courant continu Intorq: série L7..., L8...

CHOIX DU FREIN

Pour définir le type de frein à utiliser, **il est nécessaire** résistant MR (par exemple, la charge à maintenir en de connaître le couple de freinage MF [Nm] dont **on a besoin,** ce couple dépend du type d'application requis.

Données nécessaires à la détermination du frein :

- 1) Inertie globale Totale des pièces tournantes retournées à l'arbre du moteur électrique ITOT [Kgm2]
- 2) Nombre de tours du moteur électrique [tpm]
- **3)** Temps de freinage requis tF
- 4) La charge résistante attribuable à un couple

suspension...etc.)

5) Le nombre de freinages dans le temps, typiquement le nombre de freinages en une heure m [1/h]. Les autres données à prendre en compte sont la température ambiante, les conditions environnementales (par exemple, le frein doit être installé dans des zones poussiéreuses ou humides ou les deux, saumâtres, etc.) et la position de montage du moteur, horizontale, verticale avec arbre de commande vers le bas ou vers le haut, etc.

DÉTERMINATION DU COUPLE DE FREINAGE (formule simplifiée)

Connus:

P: puissance nominale du moteur [W]

n: N° de tours [1/min]

s: coefficient de sécurité de la fonction d'application (typiquement 2÷3).

Le couple de freinage, connu par la formule

$$M_F = P \over (2\pi \cdot \eta)/60$$

Le couple résistant aux IRM pouvant être obtenu à partir de l'un des 4 cas notables ci-dessous qui couvrent la majorité des applications réelles :

CAS 1: Levage d'un poids Q [N] ayant un moment MR [Nm] par rapport à l'axe de rotation

Le couple de freinage requis est calculé à l'aide des formules ci-dessous. En multipliant le résultat de ces formules par le coefficient de sécurité s, généralement égal à 2, on obtient le couple de freinage souhaité.

$$M_{Fs} = \frac{\frac{2\pi \cdot \eta}{60} \cdot I_{TOT}}{\text{tf} \cdot \text{ct}} - M_{R}$$

$$M_{r} M_{r} = M_{rs} . S$$

Avec ct = 0.995 coefficient de réduction du temps d'intervention.

CAS 2: Descente d'un poids Q [N] ayant par rapport à l'axe de rotation un moment MR [Nm].

Le couple de freinage requis est calculé à l'aide des formules ci-dessous. En multipliant le résultat de ces formules par le coefficient de sécurité s, généralement égal à 2, on obtient le couple de freinage souhaité

$$M_{Fs} = \frac{\frac{2\pi \cdot \eta}{60} \cdot I_{TOT}}{tf \cdot ct} + M_{R}$$

$$M_F = M_{Fs} . S$$

Avec ct = 0.995 coefficient de réduction du temps d'intervention.

CAS 3 : Couple constant résistant MR [Nm] qui s'oppose à la rotation du moteur.

Le couple de freinage requis est calculé à l'aide des formules ci-dessous. En multipliant le résultat de ces formules par le coefficient de sécurité s, généralement égal à 2, on obtient le couple de freinage souhaité.

$$M_{Fs} = \frac{\frac{2\pi \cdot \eta}{60} \cdot {}^{1}TOT}{tf \cdot ct} - M_{R}$$

$$M_F = M_{FS}$$
. S

Avec ct = 0.995 coefficient de réduction du temps d'intervention.

CAS 4 : Couple constant résistant MR [Nm] qui favorise la rotation du moteur.

$$M_{Fs} = \frac{\frac{2\pi \cdot \eta}{60} \cdot I_{TOT}}{\text{tf} \cdot \text{ct}} + M_{R}$$

$$M_F = M_{Fs} . S$$

Avec ct = 0.995 coefficient de réduction du temps d'intervention.

VÉRIFICATION DE LA DISSIPATION THERMIQUE DU FREIN

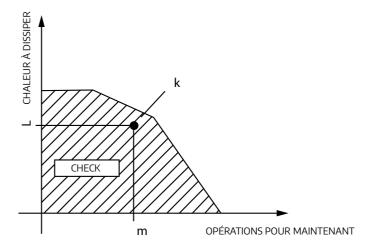
Pendant la phase de freinage, une certaine quantité de chaleur se développe qui doit être vérifiée si le frein est capable de s'écouler.

Il est nécessaire de vérifier que cette quantité de chaleur est compatible avec le nombre de freins/heure que le frein doit effectuer.

CAS 1

$$L = I_{TOT} \cdot \frac{\left(\frac{2\pi \cdot \eta}{60}\right)^2}{2} \cdot \left(\frac{M_F}{M_F + M_R}\right)$$

CAS 2


$$L = I_{TOT} \cdot \frac{\left(\frac{2\pi \cdot \eta}{60}\right)^2}{2} \cdot \left(\frac{M_F}{M_F - M_R}\right)$$

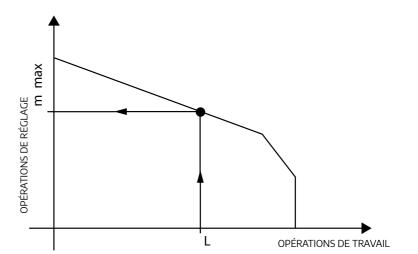
CAS 3 e 4

$$L = I_{TOT} \cdot \frac{\left(\frac{2\pi \cdot \eta}{60}\right)^2}{2}$$

Une fois connu le nombre de manœuvres/heure à effectuer avec le « Graphique 1 », on vérifie que le point K est en dessous de la courbe limite du type de frein sélectionné.

GRAPHIQUE 1

Si le point K reste en dessous de la courbe, la taille de frein sélectionnée satisfait aux conditions de charge sup-


Si cela ne se produit pas, passez à une taille supérieure et répétez l'opération

ENREGISTREMENT DE L'ENTREFER

Le nombre maximal de manœuvres possibles avant l'enregistrement de l'entrefer est obtenu avec le « Graphique 2 ».

Entrer l'axe des abscisses avec le travail L à dissiper et lire en ordonnées de la courbe de freinage sélectionnée le nombre de manœuvres globales. En termes de temps (heures), l'ajustement est obtenu avec la formule suivante.

GRAPHIQUE 2

Hreg = mmaxm

La formule ci-dessus permet de calculer la consommation égale à 0,1 mm d'entrefer. La fonctionnalité du frein

est garantie pour une valeur d'entrefer maximale de 0,7 mm (consommation 0,5 mm).

CARACTÉRISTIQUES GÉNÉRALES DES FREINS

Freins électromagnétiques à ressorts, conçus pour le service S1 *, IP54 avec isolation de classe F, surchauffe de classe B.

DE SÉRIE

- ▶ Disque de frein en aluminium : série TA, taille CT 1,2,3,4,5 et séries L7 et L8. Acier : série TA, taille CT 6,7,8 et séries GA et GC.
- ▶ Joint à double friction, silencieux, sans amiante
- ▶ Moyeu d'entraînement denté avec joint torique anti-vibrations (à l'exclusion des freins L7 et L8).
- Pas de charge axiale sur l'arbre moteur pendant le freinage.
- ▶ Moment de freinage élevé.
- ▶ Possibilité d'enregistrer le moment de freinage en continu selon le type d'utilisation (hors frein L7) comme indiqué dans les tableaux de caractéristiques des freins.
- ▶ Moteurs fournis en série avec le frein étalonné à 80 % de la valeur nominale du moment de freinage (± 15 %), utilisation (à l'exclusion du frein L7) ,comme indiqué dans les tableaux des caractéristiques du frein.
- ▶ Le plateau moteur indique la valeur minimale et la valeur nominale du moment de freinage (pour le frein L7 uniquement,

la valeur nominale).

▶ Frein connecté à un bornier auxiliaire à l'intérieur de la boîte à bornes. L'alimentation du moteur est toujours séparée de l'alimentation du frein. Dans les freins des séries TA et GA avec un bornier auxiliaire, tandis que les séries TC, GC, L7, L8 avec redresseur. Pour le raccordement des freins, voir « Installation et entretien des freins ».

SUR DEMANDE

- Levier de déblocage manuel avec retour automatique (tige du levier de déblocage au niveau de la boîte à bornes et amovible).
- ▶ Prédisposition pour la rotation manuelle de l'arbre moteur au moyen d'une clé hexagonale mâle sur le côté opposée à la commande.
- ▶ le degré de protection IP55 (impossible à exécuter avec le levier de déblocage et sur les séries TC, L7, L8).
- Large disponibilité de conceptions spéciales : servo-ventilateur, encodeur, levier de déblocage... (pour plus de détails, voir chapitre conceptions spéciales à la page 145).

Si le cycle de travail comprend des périodes de fonctionnement avec la bobine sous tension (frein activé) et le moteur arrêté ou à faible vitesse, il est essentiel d'équiper le moteur auto-freinant de servo-ventilation.

CARACTÉRISTIQUES DES FREINS À COURANT ALTERNATIF DES SÉRIES TA ET GA

- ▶ Vitesse d'insertion et de déconnexion élevée permettant :
- un démarrage complètement libre du moteur
- une fréquence de freinage élevée.
- Nombre élevé de freinages.
- Bonne dissipation de la chaleur à travers la structure en aluminium moulé sous pression.
- Ancre mobile avec noyau lamellaire magnétique pour plus de vitesse et moins de pertes électriques.
- La bobine de l'électro-aimant est complètement cimentée avec de la résine époxy.
- Possibilité de régler le moment de freinage.

Frein recommandé pour les applications nécessitant un freinage puissant et très rapide.

FREINS EN CA SÉRIE TA

Tab. 9.17.1

			Moment d stati	_						
Moto	eur	Frein	M _f Minimum [Nm]	M _f Nominal [Nm]	Puissance [W]	Δ 230V 50Hz [A]	Y 400V 50H [A]	Entrefer [mm]	Jeu de tirants levier de déverr- ouillage [mm]	Épaisseur- inimale du disque de frein [mm]
	63	TA1	2	4,5	17	0,13	0,07	0,15÷0,50	0,8	5
	71	TA2	3	10	22	0,16	0,09	0,20÷0,60	0,9	5,5
	80	TA3	5	16	27	0,26	0,15	0,20÷0,60	0,9	6
	90	TA4	8	20	29	0,30	0,17	0,25÷0,70	1	6,5
Ψ ¥	90	GA5	15	40	49	0,68	0,39	0,25÷0,70	1	6,5
2	100	TA5	15	40	49	0,68	0,39	0,25÷0,70	1	6,5
	112	TA6	20	60	60	0,90	0,52	0,25÷0,70	1	6,5
	132	TA7	30	90	69	1,18	0,68	0,30÷0,70	1	7
	132	GA7	60	150	78	1,51	0,86	0,35÷0,70	1,2	7
	160	TA8	60	200	130	1,40	0,80	0,30÷0,70	1	7,5
	180	TA8D	130	400	130	1,40	0,80	0,35÷0,70	1	7,5
A W	200	TA8D	130	400	130	1,40	0,80	0,35÷0,70	1	7,5
	225	TA8D	130	400	130	1,40	0,80	0,35÷0,70	1	7,5

- **1.** Le moment de freinage peut être réduit (voir « Installation et entretien des freins »). Il n'est pas conseillé pour des raisons de sécurité d'étalonner le moment de freinage à des valeurs inférieures à la plaque minimum.
- **2.** Le moteur doit être équipé d'un moment de freinage étalonné à 80 % (± 15 %) de sa valeur nominale, ou d'un couple de freinage égal à la valeur nominale.
- **3. ATTENTION:** Enregistrer périodiquement l'entrefer. Sa valeur doit toujours être dans les valeurs du tableau. Voir le paragraphe « Installation et entretien ».
- **4.** Jeu "g" pour la valeur minimale de l'entrefer (pour les freins avec levier de déblocage en option). Le jeu "g" est réduit au fur et à mesure que l'épaisseur du disque de frein diminue. Le réglage de l'entrefer restaure automatiquement le jeu "g".

^{*} Pour les freins des séries TA et GA, le service S1 ne peut être garanti qu'avec la ventilation du moteur.

CARACTÉRISTIQUES DES FREINS À COURANT CONTINU

- ▶ Intervention très progressive, tant au démarrage du moteur qu'au freinage, en raison de la vitesse plus faible du frein en courant continu.
- ▶ Silence maximum dans les interventions et le fonctionnement.
- La bobine de l'électroaimant est complètement cimentée avec de la résine époxy et les pièces mécaniques sont protégées par un traitement de galvanisation.
- Possibilité de régler le moment de freinage (hors frein L7).

Freins recommandés pour les applications nécessitant un freinage et un démarrage réguliers et silencieux

FREINS EN CC SÉRIES TC ET GC

Tab. 9.17.2

			Moment d stat		Valeurs m	esurées à l'e redresseur	ntrée du			
Mote	ur	Frein	M _f Minimum [Nm]	M _f Nominal [Nm]	Puissance [W]	Δ 230V 50Hz [A]	Y 400V 50H [A]	Entrefer [mm]	Jeu de tirants levier de déverr- ouillage [mm]	Épaisseur minimale du disque de frein [mm]
	63	TC1	2	5	17	0,08	0,05	0,15÷0,50	0,8	5
	71	TC2	7	12	22	0,10	0,06	0,20÷0,60	0,9	5,5
	80	TC3	8	16	27	0,13	0,08	0,20÷0,60	0,9	6
	90	TC4	8	20	32	0,15	0,09	0,25÷0,70	1	6,5
Σ X	90	GC5	18	40	40	0,17	0,10	0,25÷0,60	1	6,5
2	100	TC5	16	40	50	0,24	0,14	0,25÷0,70	1	6,5
	112	TC6	25	60	60	0,29	0,17	0,25÷0,70	1	6,5
	132	TC7	40	90	65	0,32	0,19	0,30÷0,70	1	7
	132	GC7	40	150	65	0,32	0,19	0,35÷0,80	1,2	7
	160	TC8	80	200	85	0,40	0,23	0,30÷0,70	1	7,5
	180	TC8D	180	400	90	0,43	0,25	0,35÷0,70	1	8
	200	TC9D	300	600	140	0,66	0,38	0,35÷0,70	1	8
GMK	225	TC9D	300	600	140	0,66	0,38	0,35÷0,70	1	8
	250	TC10*	500	800	160	0,73	0,42	0,35÷0,70	1	12
	280	TC10**	500	800	160	0,73	0,42	0,35÷0,70	1	12

^{*} sur demande, il est possible de monter également le frein réduit TC9D de 300÷600Nm

FREINS EN CC SÉRIES INOTQ L7 L8

Tab. 9.17.3

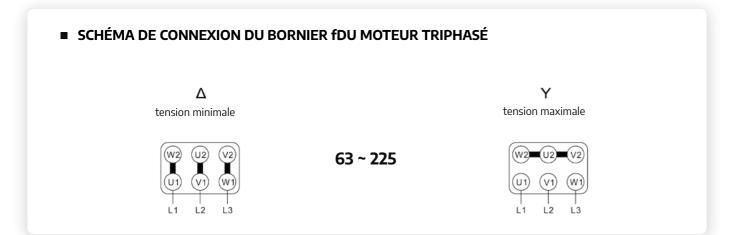
			Moment d stati		Valeurs n	nesurées à l redresseur				
Mote	ur	Freno	M _f Minimum [Nm]	M _f Nominal [Nm]	Puissance [W]	Δ 230V 50Hz [A]	Y 400V 50H [A]	Entrefer [mm]	Jeu de tirants levier de déverr- ouillage [mm]	Épaisseur minimale du disque de frein [mm]
	63	L7.06		4	20	0,09	0,06	0,20÷0,50	1	5,5
		L8.06	2	4			5,55	0,20 0,00	•	4,5
	71	L7.08		8	25	0,12	0,07	0,20÷0,50	1	4,5
		L8.08	4	8	23	0,12	0,07	0,20.0,50	'	5,5
	80	L7.X8		12	25	0,12	0,07	0,20÷0,50	1	4,5
		L8.X8	6	12	23	0,12	0,07	0,20.0,30	· ·	5,5
	90	L7.10		16	30	0,14	0,08	0,20÷0,50	1	8,5
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		L8.10	8	16	30	0,14	0,06	0,20+0,50		7,5
	100	L7.12		32	40	0,20	0,12	0,30÷0,75	1 -	9,2
		L8.12	14	32	40	0,20	U,IZ	0,30+0,75	1,5	8
	112	L7.14		60	50	0,24	0,14	0,30÷0,75	1,5	9,2
		L8.14	25	60	50	0,24	0,14	0,30+0,75	1,5	7,5
	132	L7.16		80	55	0.27	010	0.20:0.75	1.5	10,7
		L8.16	35	80	55	0,27	0,16	0,30÷0,75	1,5	8
	160	L8.18	65	150	85	0,40	0,23	0,40÷0,90	2	10
A X	180	L8.20	115	260	100	0,46	0,27	0,40÷0,90	2	12
G	200	L8.25	175	400	110	0,50	0,30	0,40÷1,0	2	15,5

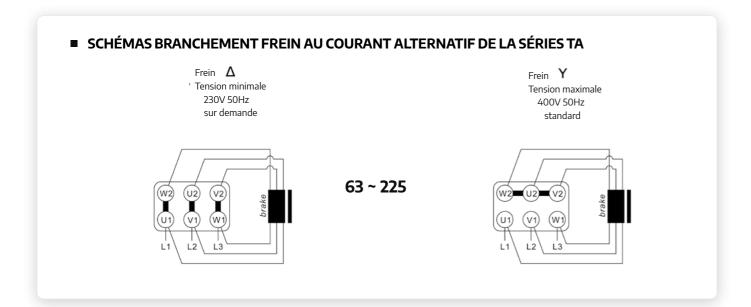
^{*} Valeurs reportées sur la plaque signalétique du moteur.

- entretien des freins ») (hors série L7). Il n'est pas conseillé pour des raisons de sécurité d'étalonner le moment de freinage à des valeurs inférieures à la plaque minimum.
- 2. Le moteur est alimenté avec un moment de freinage étalonné à 80 % (± 15 %) de sa valeur nominale, ou avec un moment freins L7 ; sur demande, le frein série L8. de freinage égal à la valeur nominale.
- **3. ATTENTION:** Enregistrer périodiquement l'entrefer (hors série L7). Sa valeur doit toujours être dans les valeurs du tableau.
- 1. Le moment de freinage peut être réduit (voir « Installation et 4. Jeu "q" pour la valeur minimale de l'entrefer (pour les freins avec levier de déblocage en option). Le jeu "g" est réduit au fur et à mesure que l'épaisseur du disque de frein diminue. Le réglage de l'entrefer restaure automatiquement le jeu "g". **5.** Le moteur en version standard est fourni avec la série de

^{**} sur demande, il est également possible de monter le frein renforcé TC10D à partir de 1000÷1500Nm

^{**} Recommandé pour les charges lourdes (sur demande).

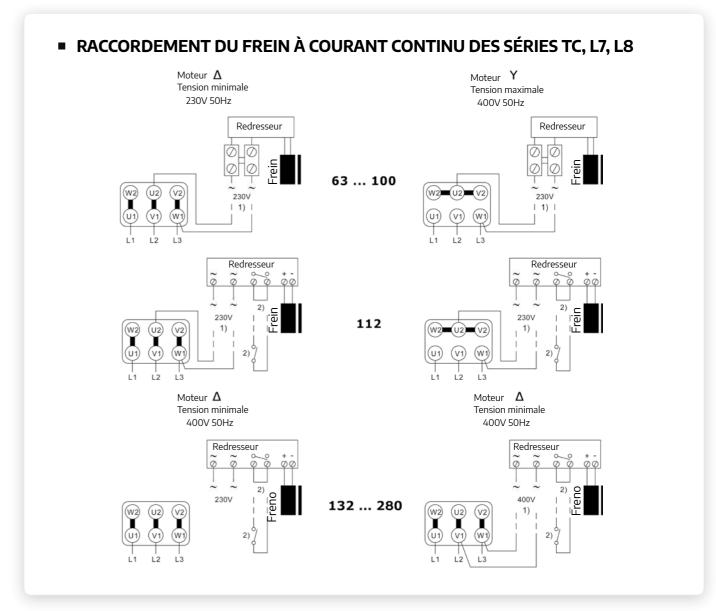

ALIMENTATION FREIN À COURANT ALTERNATIF DES SÉRIES TA ET GA


Avant de mettre le frein sous tension, s'assurer que la tension d'alimentation correspond à la valeur de la plaque de frein.

Tension d'alimentation:

- des moteurs à Δ 230 V / Y 400 V 50 Hz et des moteurs à Δ 400 V 50 Hz :
- Bobine de frein à Δ 230 V / Y 400 V 50 Hz, frein standard connecté à Y pour alimentation 400 V c.a. 50 Hz
- ▶ ∆ connexion pour alimentation 230 V AC et différentes tensions d'alimentation sur demande.

Différentes tensions et fréquences de puissance sont disponibles sur demande.



ALIMENTATION DU FREIN À COURANT CONTINU DES SÉRIES TC, GC, L7, L8.

Avant de mettre le frein sous tension, s'assurer que la tension d'alimentation correspond à la valeur de la plaque de frein.

Tension d'alimentation :

- ▶ Moteurs à ∆230 V/Y 400 V 50 Hz : alimentation standard du redresseur 230 V ca 50/60 Hz (alimentation du redresseur 400 V ca sur demande) 50/60 Hz);
- Moteurs à Δ 400 V 50 Hz: alimentation standard du redresseur 400 V ca 50/60 Hz. (alimentation du redresseur 230 V ca sur demande) - 50/60 Hz.);
- Différentes tensions d'alimentation disponibles sur demande;
- 1) Les moteurs sont alimentés avec le redresseur connecté au bornier auxiliaire (de taille 112 à 160 bornier intégré dans le redresseur). Sur demande, connexion du redresseur au bornier du moteur.
- **2)** Freinage rapide (par l'installateur). Taille du moteur 90, 100 sur demande. Le contacteur doit fonctionner en parallèle avec le contacteur d'alimentation du moteur ; les contacteurs doivent être adaptés à l'ouverture des charges inductives.

Disponible sur demande:

- > levier de déverrouillage manuel à retour automatique (tige du levier de déverrouillage en correspondance avec la boîte à bornes et amovible).
- > possibilité de rotation manuelle de l'arbre moteur au moyen d'une clé hexagonale du côté opposé à la commande.
- > Degré de protection IP55 (pas possible pour exécution avec levier de déverrouillage et sur séries TC, L7, L8).
- > Large disponibilité d'exécutions spéciales : servoventilateur, encodeur, levier de déverrouillage... (pour être complet voir le chapitre exécutions spéciales).

RÉGLAGE DU MOMENT DE FREINAGE

(Hors séries L7 et L8)

Le moment de freinage est directement proportionnel à la compression des ressorts du frein.

Le moteur JM/GMK est alimenté avec un moment de freinage étalonné à 80 % ± 15 % de sa valeur nominale (série L7 à 100 %).

Pour une utilisation correcte du moteur auto-freinant, il est conseillé de régler le moment de freinage en fonction de la charge, de la vitesse de rotation et du temps de freinage. Pour une utilisation générale, il est recommandé d'étalonner le moment de freinage à environ 1,5 fois le couple nominal du moteur. Dans tous les cas, la valeur doit être comprise dans les limites indiquées sur la plaque.

IL EST DÉCONSEILLÉ:

a) étalonner le moment de freinage à une valeur supérieure à la série maximale de plaques d'immatriculation GA, GC, L8, étant donné que le frein ne peut être bloqué ou débloqué que partiellement, ce qui entraîne des vibrations et une surchauffe.

b) étalonner le moment de freinage à une valeur inférieure à la valeur minimum de la plaque car il peut y avoir des freinages inconstants.

SÉRIE TA, GA, GC:

- 1) Tourner les vis (3) (dessin page 145) en réglant uniformément le moment de freinage, avec une clé hexagonale mâle. Avec la rotation dans le sens horaire, le moment de freinage il augmente, avec la rotation dans le sens anti-horaire, il diminue.
- **2)** Vérifier la valeur d'étalonnage du moment de freinage à l'aide d'une clé dynamométrique couplée à l'extrémité de l'arbre moteur.

Dans la série TA, il est possible de connaître approximativement la valeur du moment de freinage obtenu après réglage, en mesurant la distance (mise en évidence par la lettre "A" [mm] voir tableau suivant et (dessin page 145) entre la vis de réglage et l'électro-aimant.

FREINS SÉRIE TA

		Valeur o	du moment	t de freinag	je [Nm] lor	sque la dis	tance "A"		
					Taille de frei	n			
"A"	TA1	TA2	TA3	TA4	TA5	TA6	TA7	TA8	TA8D
[mm]									
0	4,5	10	16	20	40	60	90	200	400
1	3,8	8,3	13,3	16	35	53	77	128	256
2	3,1	6,6	10,5	12	30	46	64	107	214
3	2,4	5	8	8	25	39	51	86	172
4	1,7	3,6	5,3	4	20	32	38	64	128
5	1	1,7	2,6	-	15	25	26	43	86
6	0,3	-	-	-	10	18	13	23	46
7	-	-	-	-	5	11	-	-	-

La zone en surbrillance délimite la valeur de sécurité

Série TC, L8:

- 1)) Tourner la bague (3) (dessin page 145) de réglage du moment de freinage. Avec la rotation dans le sens horaire, le moment de freinage il augmente, avec la rotation dans le sens anti-horaire, il diminue.
- **2)** Vérifier la valeur d'étalonnage du moment de freinage à l'aide d'une clé dynamométrique couplée à l'extrémité de l'arbre moteur. Pour des valeurs de la plaque inférieures au minimum, le nombre de filets en prise sur la bague de réglage est insuffisant ; la bague pourrait se détacher.

Il est possible de connaître de façon approximative la valeur du moment de freinage obtenu après réglage : Série TC : on mesure la distance (mise en évidence par la lettre "B" [mm] voir tableau suivant et dessin page 145) entre la bague de réglage et l'électro-aimant.

FREINS SÉRIE TC

		Va	leur du m	oment d	e freinag	e [Nm] lo	rsque la	distance	"B"		
					7	Taille de fre	ein				
"B"	TC1	TC2	TC3	TC4	TC5	TC6	TC7	TC8	TC8D	TC9D	TC10
[mm]											
0	5	12	16	20	40	60	90	200	400	600	800
1	4,3	10	13,2	16	36	53	77	180	360	520	675
2	3,5	7	10,6	12	32	46	64	160	330	480	600
3	2,8	4,5	8	8	28	39	51	140	200	420	525
4	2,1	2	5,3	4	24	32	38	120	180	360	450
5	1,4	-	2,6	-	20	25	25	100	150	300	375
6	0,7	-	-	-	16	18	13	80	130	240	300
7	-	-	-	-	12	11	-	60	110	180	225

La zone en surbrillance délimite la valeur de sécurité

SÉRIE L8:

Compter les clics de la rotation de la bague (la bague peut être desserrée clic après clic, dans le sens anti-horaire, jusqu'à la taille maximale C max. (voir le tableau suivant et le dessin à la page 145.)

					Série L8					
					Taille	de frein				
Taille de frein	06	08	X8	10	12	14	16	18	20	25
[Nm] ¹⁾	0,2	0,35	0,55	0,8	1,3	1,7	1,6	3,6	5,6	6,2
C max[mm]	7	7,5	7,5	7,5	11	11	13	14	17	21

AVERTISSEMENTS CONCERNANT LA SÉCURITÉ DES MOTEURS AUTO-FREINANTS

Une mauvaise utilisation du moteur, une installation incorrecte, le retrait des protections, l'élimination des dispositifs de sécurité, un manque d'entretien peuvent causer de graves dommages aux personnes et aux biens.

Lorsqu'il est possible qu'un dysfonctionnement des freins cause des dommages aux personnes, aux biens et à la production, l'utilisation du moteur auto-freinant NE garantit PAS un niveau de sécurité adéquat et des mesures de sécurité supplémentaires doivent être prévues. Un mauvais étalonnage du moment de freinage et un manque d'entretien périodique peuvent entraîner un dysfonctionnement du frein.

Ne relâchez pas manuellement le frein si vous ne pouvez pas prévoir les conséquences de cette manœuvre.

La tige du levier de déblocage ne doit pas être installée en permanence sur le frein pendant le fonctionnement du moteur pour éviter une utilisation inappropriée et dangereuse.

Par conséquent, le moteur électrique doit être déplacé, installé, mis en service, entretenu et réparé exclusivement par du personnel qualifié (selon IEC364).

Dangers : les moteurs électriques ont des éléments sous tension, des éléments en mouvement, des éléments à une température supérieure à 50 °C.

Utiliser des câbles de section appropriée afin d'éviter une surchauffe et/ou une chute de tension excessive aux bornes du moteur.

Faites attention à la connexion dans le bornier (Δ , Y) indiquée sur la plaque du moteur.La tension minimale se réfère à la connexion à Δ , la tension maximale à Y.

Le démarrage du triangle en étoile n'est possible que lorsque la tension du réseau correspond à la valeur du triangle Δ .

Sens de rotation: il est conseillé de vérifier le sens de rotation du moteur avant le couplage à la machine de l'utilisateur, lorsqu'un sens de rotation contraire à celui souhaité peut causer des dommages aux personnes et/ou aux choses (il est conseillé de retirer la languette de l'extrémité de l'arbre pour éviter sa fuite violente).

Pour changer le sens de rotation dans les moteurs triphasés, il suffit d'inverser deux phases d'alimentation de la ligne.

Mise à la terre : les parties métalliques du moteur qui ne sont pas normalement sous tension doivent être connectées à la terre à l'aide de la borne appropriée marquée, située à l'intérieur de la boîte à bornes, toujours à l'aide d'un câble de section appropriée.

Il incombe à l'installateur et/ou à l'utilisateur de s'assurer que le frein fonctionne correctement.

Avant de démarrer le moteur, il est nécessaire de s'assurer que le moment de freinage est adéquat pour l'application particulière et, si nécessaire, de le régler.

De série, les moteurs sont alimentés avec une alimentation en freinage distincte de celle du moteur.

Il est possible d'alimenter le frein directement à partir du bornier du moteur à l'aide des câbles de connexion spéciaux fournis avec le moteur, situés à l'intérieur de la boîte à bornes.

Pour ceux entraînés par onduleur, il est nécessaire d'alimenter séparément le frein avec des câbles spécialement préparés par l'installateur

IMPORTANT:

Avant la mise en service du groupe moteur-frein, il est nécessaire de :

- a) Avant d'effectuer la connexion électrique, s'assurer que l'alimentation électrique correspond aux données électriques figurant sur la plaque. Connecter selon les schémas indiqués sur la feuille contenue à l'intérieur de la boîte à bornes.
- b) vérifier le bon serrage des bornes électriques et de la borne de terre
- c) fermer la boîte à bornes en positionnant correctement le joint et en serrant toutes les vis de fixation du couvercle de manière à ne pas altérer le degré de protection déclaré sur la plaque
- d) remonter le couvercle du ventilateur et le fixer avec les vis appropriées
- e) vérifier la fixation mécanique des pièces de transmission couplées et remonter les protections éventuelles (carter de protection).

• 9.18 INSTALLATION ET ENTRETIEN DES MOTEURS AUTO-FREINANTS

Réception:

vérifier que le moteur correspond à ce qui a été commandé et qu'il n'a pas été endommagé pendant le transport. Un moteur endommagé ne peut pas être mis en service.

Les œillets présents dans le carter servent uniquement au levage du moteur.

Pour tout stockage dans l'entrepôt, l'endroit doit être couvert, propre, sec, exempt de vibrations et d'agents corrosifs.

Après de longues périodes de stockage dans l'entrepôt ou de longues périodes d'inactivité, il est conseillé de vérifier la résistance d'isolement entre les enroulements et vers le sol avec un outil spécial.

Pour les opérations avec une température autre que -15 +40 °C et à des altitudes supérieures à 1000 m, contacter le bureau technique de Seipee. Il est interdit de l'utiliser dans des endroits présentant des atmosphères agressives et présentant un danger d'explosion.

Lors de l'installation, positionner le moteur de sorte qu'il y ait un grand passage d'air du côté du ventilateur ; une circulation d'air insuffisante compromet l'échange thermique.

Éviter la proximité d'autres sources de chaleur qui affectent la température de l'air de refroidissement et du moteur par irradiation.

La fondation doit être bien dimensionnée pour assurer la stabilité lors de la fixation

Couplages

Vérifier que la charge radiale/axiale est comprise dans les valeurs indiquées dans le tableau « Efforts radiaux/axiaux » à la page 26.

Pour le trou des parties clavetées à l'extrémité de l'arbre, la tolérance H7 est recommandée.

Avant le couplage, nettoyer et lubrifier les surfaces de contact pour éviter les risques de grippage

Lors des opérations de montage (démontage), toujours utiliser des tirants spéciaux (extracteurs) pour éviter tout dommage aux roulements du moteur. L'utilisation du marteau doit donc être exclue.

Il est conseillé de chauffer les joints, les poulies jusqu'à 60-80 °C avant le montage.

Dans le couplage direct, prendre soin de l'alignement du moteur avec celui de la machine entraînée.

Dans le couplage à courroie, vérifier que : l'axe du moteur doit toujours être parallèle à l'axe de la machine entraînée, le porte-à-faux de la poulie doit être aussi petit que possible, la tension des courroies ne doit pas être excessive afin de ne pas compromettre la durée de vie des roulements ou provoquer la rupture de l'arbre moteur.

Les moteurs de la série JMK sont équilibrés par une demi languette ;

afin d'éviter les vibrations et les déséquilibres, il est nécessaire que les pièces de transmission aient été correctement équilibrées avant le couplage.

ENTRETIEN PÉRIODIQUE DES FREINS

Les opérations d'inspection des freins doivent être effectuées avec le frein déconnecté électriquement et après vérification de la mise à la terre.

Vérifier périodiquement que l'entrefer est dans les valeurs indiquées dans les tableaux respectifs (voir le chapitre « Caractéristiques des freins ») ; un entrefer excessif rend le frein moins silencieux et peut empêcher le déblocage du frein lui-même.

En outre, un entrefer supérieur à la valeur maximale peut produire :

- ▶ une diminution du moment de freinage
- un manque total de freinage dû à l'annulation du jeu "g" des tiges du levier de déblocage (pour les freins avec levier de déblocage en option) ; le réglage de l'entrefer restaure automatiquement le jeu "g"
- un déblocage partiel du frein avec une augmentation conséquente de la température et de l'usure du joint de frottement.

RÉGLAGE DE L'ENTREFER

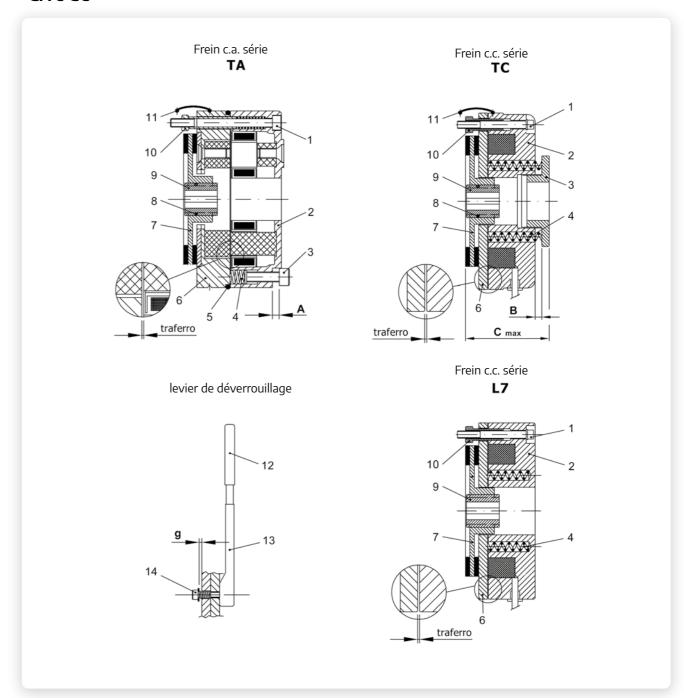
SÉRIE TA, GA, TC, GC

- desserrer les écrous (10) qui bloquent les vis (1) de fixation du frein au bouclier en fonte du moteur
- > serrer les vis (1) en maintenant les écrous (10) jusqu'à ce que l'entrefer minimum soit atteint (voir chapitre « caractéristiques
- serrer les écrous (10) en maintenant les vis (1)
- vérifier l'entrefer obtenu à proximité des colonnettes à l'aide d'une jauge d'épaisseur.

SÉRIE L8

- desserrer les vis (1) de fixation du frein au bouclier en fonte du moteur
- ▶ tourner les registres (10) qui régulent l'entrefer jusqu'à ce que l'entrefer minimal soit atteint (voir chapitre « caractéristiques des freins »)
- serrer les vis (1) tout en maintenant les registres (10)
- vérifier l'entrefer obtenu à proximité des colonnettes à l'aide d'une jauge d'épaisseur.

DISQUE FREIN

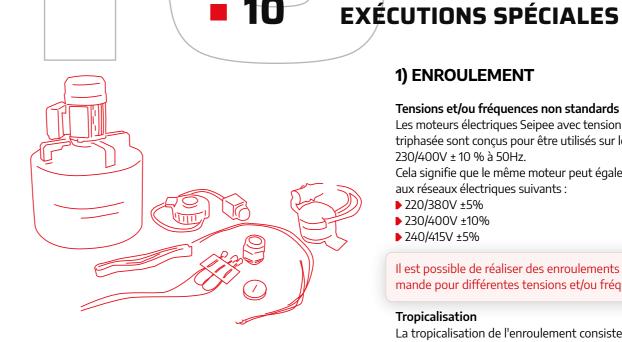

Vérifier l'épaisseur du joint de frottement des deux côtés. Cette valeur ne doit pas être inférieure à 1 mm par côté. Si nécessaire, remplacer le disque de frein.

LEVIER DE DÉBLOCAGE

Si le levier ne débloque pas le frein, réinitialisez le jeu « g » indiqué dans le tableau (voir chapitre « Caractéristiques du frein »).

Il est toujours conseillé de retirer la poignée une fois les opérations terminées

GA e GC


PIÈCES DE RECHANGE FREINS

- 1) Vis de fixation
- 2) Électro-aimant
- 3) Réglage du moment de freinage : vis à tête cylindrique avec douille hexagonale pour la série TA, vis sans tête avec six pans creux pour les séries GA et GC, écrou à bague de réglage pour les séries TC et L8.
- 4) Ressort de freinage
- 5) Joint torique pour IP 55 (séries TA et GA)
- **6)** Ancre de freinage

- 7) Disque frein
- **8)** Joint torique anti-vibrations
- **9)** Moyeu d'entraînement
- **10)** Vis de réglage de l'entrefer
- **11)** Protection en caoutchouc
- **12)** Poignée (amovible)
- **13)** Corps
- 14) Vis de registre jeu "g"

EXÉCUTIONS **NON STANDARD**

1) ENROULEMENT

Tensions et/ou fréquences non standards

Les moteurs électriques Seipee avec tension d'alimentation triphasée sont conçus pour être utilisés sur le réseau européen 230/400V ± 10 % à 50Hz.

Cela signifie que le même moteur peut également être connecté aux réseaux électriques suivants :

- ▶ 220/380V ±5%
- ▶ 230/400V ±10%
- ▶ 240/415V ±5%

Il est possible de réaliser des enroulements spéciaux sur demande pour différentes tensions et/ou fréquences.

Tropicalisation

La tropicalisation de l'enroulement consiste en un revêtement à froid d'un produit de qualités hygroscopiques remarquables qui assure une certaine réfractarité à partir de la pénétration de la condensation dans les matériaux devant maintenir une étanchéité optimale.

Il est indiqué dans les situations où le moteur est installé dans des environnements où le niveau d'humidité est particulièrement élevé.

Imprégnation supplémentaire d'enroulement

Elle consiste en un deuxième cycle d'imprégnation, elle est recommandée pour :

- environnements humides et corrosifs (moisissures);
- les environnements soumis à de fortes contraintes mécaniques et électromagnétiques induites par des onduleurs ;
- en présence d'agents électriques puissants (pics de tension);
- en présence d'agents mécaniques puissants (vibrations mécaniques ou électromagnétiques induites);

2) BOÎTE À BORNES

Boîte à bornes latérale

De façon standard, la boîte à bornes est en position T, c'est-àdire en haut, du côté de la commande.

Pour les moteurs équipés de pieds IM B3 et de positions de montage dérivées, il est possible de positionner la boîte à bornes R (à droite) ou L (à gauche) sur demande.

Dans les moteurs auto-freinants, le levier de débrayage suit la position de la boîte à bornes.

Boîte à bornes NDE

Sur demande, la boîte à bornes peut être positionnée du côté NDE (côté ventilateur) au lieu du côté DE (côté commande) de série.

Entrée câbles

De série, les presse-étoupes sont positionnés sur le côté droit de la boîte à bornes. La position d'entrée du câble peut être tournée de 90° ou 180° sur demande.

Type presse-étoupes

Les presse-étoupes standards sont en polyamide, et les dimensions relatives pour chaque taille de moteur sont indiquées dans les tableaux des données dimensionnelles des différentes séries de moteurs.

Des presse-étoupes et des fiches métalliques peuvent être fournis sur demande, particulièrement adaptés aux applications avec des températures en dehors de la plage -15/+40 °C.

Connecteur cylindrique pour câblage rapide du moteur

Condensateur auxiliaire (série JMM)

Condensateur auxiliaire avec disjoncteur électronique intégré pour un moment de démarrage élevé (MS/MN= environ 1,1÷1,4). Il est automatiquement activé lorsque le moteur est démarré pendant une durée de 1,5 s (non adapté aux applications avec des temps de démarrage > 1,5 s).

Avertissement: le temps entre un démarrage et le suivant doit être > 6 s, afin de ne pas endommager le disjoncteur.

3) PROTECTION MOTEUR

Sonde termiche bimetalliche (PTO)

Sondes thermiques bimétalliques (PTO)

Trois sondes connectées en série avec un contact normalement fermé inséré dans l'enroulement du moteur. Le contact est ouvert lorsque la température de l'enroulement atteint et dépasse la valeur d'intervention (150 °C pour moteur de classe F). VN,max. 250 [V], IN,max. 1.6 [A]

Les bornes sont situées à l'intérieur de la boîte à bornes du moteur.

De série sur les moteurs de hauteur d'essieu de 160 à 450.

Sondes thermiques à thermistance (PTC)

Trois thermistances connectées en série insérées dans l'enroulement sont conformes aux normes DIN 44081/44082, pour être connectées à un équipement de décrochage (l'achat de cet équipement est à la charge de l'acheteur du moteur).

Il y a un changement soudain de la résistance qui provoque le relâchement lorsque la température de l'enroulement atteint et dépasse la valeur d'intervention (150 °C pour moteur de classe F).

Les bornes sont situées à l'intérieur de la boîte à bornes du moteur.

De série sur tous les moteurs d'une puissance supérieure ou égale à 0.75 kW.

Capteur de température PT 100 (thermomètre à résistance)

Il s'agit d'un capteur de température qui exploite la variation de la résistivité de certains matériaux au fur et à mesure de l'évolution de la température, conformément à la norme DIN-CEI 751. Trois PT 100 sont insérés dans l'enroulement, un pour chaque phase. Les bornes situées à l'intérieur de la boîte à bornes du moteur doivent être connectées à un équipement spécial (l'achat de cet équipement est à la charge de l'acheteur du moteur).

Capteur de température KTY84-130

Capteur de température en silicium dépendant de la variation de la résistance avec un coefficient de température positif.

Réchauffeur anti-condensation

Il est recommandé pour les moteurs fonctionnant dans des environnements :

- avec une humidité élevée ;
- ▶ avec une forte excursion thermique ;
- ▶ à basse température (formation possible de glace) ;

C'est une résistance fixée sur des têtes de bobine qui permet de chauffer l'enroulement du moteur électrique arrêté et donc d'éliminer la condensation à l'intérieur de la carcasse.

Structure : Ruban de tissu de verre, dans lequel est insérée une résistance au nickel-chrome à fils multiples, recouvert d'un ruban adhésif en polyester renforcé de filaments de fibre de verre et d'une autre chaussette extérieure en fibre de verre.

Alimentation monophasée 230 V ca ±10% 50 / 60 Hz, consommation d'énergie :

- 25 W pour la taille 63 ... 90;
- 26 W pour la taille 100 ... 112;
- 40 W pour la taille 132 ... 160;
- 26 W pour la taille 180 ... 200;
- 42 W pour la taille 225 ... 250;
- CENAL LUI 200
- 65 W pour la taille 280;
- 99 W pour la taille 315 ... 450;

Le réchauffeur ne doit pas être alimenté pendant le fonctionnement du moteur.

Bornes situées à l'intérieur de la boîte à bornes du moteur.

Le réchauffeur anti-condensation est obligatoire en conjonction avec l'exécution des trous d'évacuation de condensation. De série sur les moteurs GM 160...450 sur le côté opposé à la boîte à bornes.

Lors de la commande, il est toujours nécessaire de spécifier la position de travail du moteur.

Si, lors de l'installation, les bouchons sur les trous d'évacuation du condensat situés sur la face inférieure du moteur électrique n'ont pas été retirés, ils doivent être ouverts environ tous les 5 mois pour permettre au condensat de s'échapper.

4) COULEURS ET PEINTURE

Moteurs de Seipee sont revêtus de poudre avec un émail nitro-combiné adapté pour résister aux environnements industriels normaux et pour permettre des finitions supplémentaires avec des peintures synthétiques à un seul composant.

- ▶ JMM 56...100: RAL 9006 (gris PERLE);
- ▶ JM 56...160: RAL 9006 (gris PERLE);
- ▶ GM 160...450: RAL 5010 (blue);
- ▶ JMD 80...160: RAL 9006 (gris PERLE);
- ▶ GMD 180...250: RAL 5010 (bleu);
- ▶ JMK 63....160 RAL 9006 (gris PERLE); Copriventola RAL 9005 (Nero)
- MK 180...280 RAL 5010 (bleu):

Le choix du traitement de peinture représente une phase critique car il dépend de la durabilité du moteur électrique en fonction de l'environnement dans lequel il sera placé. Selon la norme uni EN ISO 12944-1, la durabilité de la peinture peut être classée selon 3 classes :

Faible (L) de 2 à 5 ans.

Moyenne (M) de 5 à 10 ans.

Élevée (H) plus de 15 ans.

La durabilité est indiquée à côté de la catégorie de corrosivité de l'environnement de l'installation pour permettre la définition du cycle de protection capable de fonctionner dans cet environnement et garantissant la durabilité requise.

Les cycles de peinture qui sont effectués sont entièrement conformes à la réglementation.

Classification ISO 12944:

C1 - C2 = Zones rurales, faible pollution. Bâtiments chauffés/ atmosphère neutre.

C3 = Atmosphère urbaine et industrielle. Niveaux modérés de dioxyde de soufre. Zones de production à forte humidité.

C4 = Industrielle et côtière. Installations de traitement chimique.

C5L = Zones industrielles à forte humidité et atmosphères agressives.

C5M = Zones marines, au large des côtes, estuaires, zones côtières à forte salinité

Les options suivantes sont disponibles sur demande :

- ▶ Sans peinture : moteur fourni avec apprêt uniquement
- ▶ Peinture en d'autres teintes : RAL à indiquer sur le bon de commande
- ▶ Peinture spéciale C3
- ▶ Peinture spéciale résistant aux environnements plus difficiles C4 ou C5.

5) EXÉCUTIONS SUR ROULEMENTS

PT 100 sur roulement

Capteur PT100 inséré dans le support de roulement (côté commande, côté opposé à la commande). Les bornes sont placées à l'intérieur d'une boîte de dérivation solidaire à la carcasse du moteur.

Roulement isolé électriquement

Les roulements des moteurs électriques sont potentiellement soumis à des passages de courant qui endommagent rapidement les surfaces des pistes et des corps roulants et dégradent leur graisse.

Le risque d'endommagement augmente dans les moteurs électriques de plus en plus répandus équipés de convertisseurs de fréquence, en particulier dans les applications avec des variations brusques de fréquence.

Dans les roulements de ces moteurs, il existe un risque supplémentaire dû à la présence de courants haute fréquence provoqués par les capacités parasites existantes à l'intérieur du moteur. La surface extérieure de la bague extérieure revêtue du roulement isolé électriquement est revêtue d'une couche d'oxyde d'aluminium de 100 m d'épaisseur, capable de résister à des tensions de 1 000 V cc, éliminant pratiquement les inconvénients dus aux passages de courant.

Normalement il est installée sur le roulement NDE.

À utiliser dans les moteurs équipés de convertisseurs de fréquence : conseillé à partir de la taille 250.

- Roulement 2RS
- Roulement bloqué de série sur les moteurs GM, sur demande sur la série JM
- Roulement à contact oblique

Pour les applications avec des charges axiales élevées agissant

dans une seule direction (à partir de la taille 315)

• Roulement à rouleaux cylindriques

Pour les applications avec des charges radiales constantes élevées (tailles 160 à 280).

• Graisseur automatique à un seul point pour roulements
Des lubrifiants automatiques peuvent être installés pour s'assurer que la bonne quantité de lubrifiant est distribuée dans un certain laps de temps à l'aide d'une cellule à gaz inerte.
Cette procédure de lubrification permet un contrôle plus précis de la quantité de lubrifiant fournie, par rapport aux techniques de re-lubrification manuelle traditionnelles. Il a une période de livraison nominale qui peut varier entre 1 mois et 12 mois et peut également être temporairement désactivé si nécessaire. Il est adapté au montage direct dans des environnements avec

et est particulièrement adapté aux points nécessitant une lubrification fréquente, un arrêt de la machine et des implications de sécurité. (uniquement possible pour les moteurs avec roulements re-lubrifiables, série GM taille 160 et supérieures)

6) EXÉCUTIONS MÉCANIQUES ET DEGRÉS DE PROTECTION

- Double sortie d'arbre (sur laquelle les charges radiales ne sont pas autorisées)
- ▶ Extrémités cylindriques selon dessin
- ▶ Arbre standard en acier inoxydable
- ▶ Visserie externe en acier INOX

▶ Équilibrage à clé entière

▶ Équilibrage sans clé

un espace limité

- ▶ Tolérance de bride dans la classe précise
- ▶ Couvercle de ventilateur pour environnement textile

Couvercle de ventilateur équipé d'un toit de protection spécial au lieu de la grille normale pour éviter de l'encrasser avec des déchets et la poussière des fils de l'environnement textile. La dimension longitudinale du moteur augmente de 30 à 70 mm selon la taille

Protection IP56 séries JM et GM

Recommandé pour les moteurs fonctionnant dans des environnements très humides et/ou en présence d'éclaboussures d'eau. Le degré de protection sur la plaque devient IP56. Pour les moteurs positionnés avec un axe vertical, il est préférable de contacter d'abord le bureau technique.

Protection IP65 séries JM et GM

Elle est recommandée pour les moteurs fonctionnant dans des environnements poussiéreux.

Le degré de protection sur la plaque devient IP65. Pour les moteurs positionnés avec un axe vertical, il est préférable de contacter d'abord le bureau technique.

Trous d'évacuation de la condensation

De série sur les moteurs GM 160...450 sur le côté opposé à la boîte à bornes.

Lors de la commande, il est toujours nécessaire de spécifier la position de travail du moteur.

Si, lors de l'installation, les bouchons sur les trous d'évacuation du condensat situés sur la face inférieure du moteur électrique n'ont pas été retirés, ils doivent être ouverts environ tous les 5 mois pour permettre au condensat de s'échapper.

Toît de protection contre la pluie

Exécution requise pour les applications extérieures ou en présence de projections d'eau, avec arbre vertical orienté vers le bas, position de montage (IM V5, IM V1, IM V18, IM V15, IM V17).

La valeurs LB augmente de :

- 35 mm pour la taille 56 ... 112;
- 45 mm pour la taille 132 ... 160;
- 65 mm pour la taille 180 ... 225;
- 85 mm pour la taille 250 ... 355;
- 120 mm pour la taille 355X ... 450

Exécution pour basses températures

Les moteurs standard peuvent fonctionner à température ambiante jusqu'à -15 °C avec des pointes jusqu'à -20 °C. Pour les températures ambiantes jusqu'à -30 °C et plus, des roulements spéciaux et le chauffage anti-condensation sont nécessaires. Sur demande, nous recommandons le ventilateur en alliage léger et les presse-étoupes/fiches métalliques et, en cas de condensation, les trous de drainage de condensation correspondants (dans ce cas, indiquez la position de montage).

Exécution pour hautes températures

Les moteurs triphasés en exécution standard peuvent fonctionner à température ambiante jusqu'à 55 °C avec des pics jusqu'à 60 °C, tant que la puissance requise est inférieure à celle de la plaque (selon Caractéristiques Générales / Puissance de sortie en fonction de la température ambiante Tab.......). Des roulements spéciaux et des bagues d'étanchéité en caoutchouc fluoré (viton) sont nécessaires pour une température ambiante de 60 à 90 °C. L'enroulement en classe d'isolation H, ventilateur en alliage léger et presse-étoupes/fiches métalliques sont également recommandés.

7) VENTILATION

IC418

Moteur sans ventilateur et couvercle de ventilateur. Il est utilisé dans des applications où le refroidissement est assuré par l'environnement extérieur.

IC416

Ventilateur d'asservissement axial IP54 indiqué pour :

- démarrages fréquents et/ou cycles de démarrage lourds
- ▶ au moyen d'un variateur de fréquence ou de tension puisque, en cas de fonctionnement prolongé à faible vitesse, la ventilation perd de son efficacité, et il est donc conseillé d'installer un système de ventilation forcée à débit constant. Inversement, en cas de fonctionnement prolongé à grande vitesse, le bruit émis par le système de ventilation peut être gênant, et il est donc conseillé d'opter pour un système de ventilation forcée.

Les caractéristiques du servo-ventilateur et la variation ΔL de la valeur LB (voir « dimensions moteurs ») sont reportées à page 31 Tab. 3.14.

Les bornes d'alimentation de la ventilation auxiliaire sont situées à l'intérieur d'une boîte à bornes auxiliaire solidaire au couvercle du ventilateur. Avant d'effectuer la connexion électrique, s'assurer que l'alimentation électrique correspond aux données électriques figurant sur la plaque.

Important:

150

Vérifier que le sens de rotation du ventilateur triphasé correspond à celui indiqué par la flèche sur le couvercle du ventilateur, sinon inverser deux des trois phases d'alimentation Sur demande, le servo-ventilateur peut être fabriqué dans des versions spéciales : tensions, fréquences, températures de fonctionnement selon les spécifications du client, ainsi qu'une version de protection monophasée, triphasée, multi-ententes et IP66.

8) TRANSDUCTEURS DE VITESSE

Encodeur incrémentiel standard à arbre creux à fixation élastique équipé d'un connecteur mâle de type militaire fixé au moteur

Le connecteur femelle avec son schéma de connexion est également fourni

Caractéristiques :

- type optique incrémentiel
- ▶ bidirectionnel avec canal zéro (canaux A,B,Z et respectifs refusés)
- dearé de protection IP 54
- ▶ vitesse max 6000 TPM (4000 TPM en service continu S1)
- ▶ températures de fonctionnement de -10 °C à +85 °C
- résolution de 200 à 2048 imp./tour ; norme 1024
- courant de charge max 20 mA par canal
- tension d'alimentation de 5 à 28 V c.c.
- ▶ pilote de ligne de configuration électronique/ push-pull (dans la configuration push-pull, vous ne devez pas connecter les canaux refusés A,B,Z)
- ▶ absorption à vide 100 mA.

Exécutions disponibles :

- moteur à servo-ventilation avec encodeur
- moteur auto-ventilé avec encodeur

La valeur LB dans les deux exécutions subit la même variation Δ L représentée dans le tableau (Caractéristiques des ventilateurs auxiliaires page 32 tableau 3.14).

Sur demande, sont également disponibles

- ▶ Encodeurs incrémentiels avec un degré de protection plus élevé
- ▶ Encodeurs absolus
- Résolveur

Seulement pour les séries JMK et GMK :

▶ Protection frein en caoutchouc

Il est utilisé pour empêcher la poussière et/ou l'eau ou d'autres corps étrangers de pénétrer à l'intérieur des surfaces de freinage. De plus, il limite de manière assez efficace que la poussière d'usure des freins ne se disperse dans l'environnement. Il est appliqué autour du frein dans les rainures prévues. Cette exécution est requise pour IP55

▶ Protection IP55 (impossible avec exécution avec levier de déblocage).

Série de freins TA et GA: bague d'étanchéité du côté commande pour IM B5 (bague en V pour IM B3), protection en caoutchouc étanche à la poussière et à l'eau et bague en V du côté opposé.

- ▶ Frein TC ou L7 avec protection IP66 (impossible avec le levier de déblocage).
- ▶ Disque de frein avec matériau de friction anti-adhésif (séries TA, GA, TC, GC)

Élimine le risque de collage du disque de frein. Il est recommandé pour les moteurs fonctionnant dans des environnements :

agressifs

- ▶ avec une forte concentration de vapeur
- à proximité de la mer (en présence de sel)

En outre, il est recommandé lorsque le moteur reste inutilisé pendant de longues périodes. (Attention : le moment de freinage nominal diminue de 10 %)

Levier de déblocage manuel

Il est utilisé pour libérer le moteur du frein non alimenté et revient à sa position initiale après la manœuvre (retour automatique). Utile pour effectuer des rotations manuelles en cas de panne de courant et/ou pendant l'installation. La poignée du levier est amovible et se trouve au niveau de la boîte à bornes (position standard). Il est toujours conseillé de retirer la poignée une fois les opérations terminées.

▶ Rotation manuelle

Il permet de faire tourner l'arbre moteur du côté opposé de la commande. Une clé mâle hexagonale est utilisée en l'insérant dans le trou central du couvercle du ventilateur.

- ▶ taille de 3 par taille 63;
- ▶ taille de 4 pour 71;
- ▶ taille de 5 pour 80;
- ▶ taille de 6 pour 90 ... 132;
- ▶ taille de 8 pour 160;

NON possible avec les exécutions toît de protection contre la pluie, Encodeur et le servo-ventilateur axial.

- Le moment de freinage est calibré différemment de la valeur standard.
- Micro-interrupteur mécanique pour signaler l'usure ou la position Verrouillé/Déverrouillé du frein.
 Bornes connectées à un bornier fixe dans la boîte à bornes.
- ▶ Micro-interrupteur pour signaler l'ouverture/fermeture du frein.

9) EXÉCUTIONS SELON DES NORMES SPÉCIFIQUES

Exécutions selon les normes

pour les marchés américains et canadiens, disponible sur les séries JM et GM. Certificat N° E348137 Les principales variantes sont le système d'isolation des enroulements de classe F approuvé par l'UL, le réglage des distances d'air au sol et entre les pièces sous tension.

Exécutions selon les normes

pour l'Union douanière eurasienne (Russie, Biélorussie, Kazakhstan, Arménie et Kirghizistan) certifiée RU D-IT.AD53. B07480

pour la République populaire de Chine

pour le Royaume-Uni

pour les applications navales et marines

Les moteurs des séries JM et GM (≤600 V) sont disponibles pour une utilisation dans des environnements présentant des atmosphères potentiellement explosives conformément à la directive ATEX 94/9/CE groupe II catégorie 3D pour la zone 22/3G zone 2

Les presse-étoupes PTC 130 °C et certifiés sont installés de série ATEX.

Marquage de la plaque :

ATEX II 3D Ex tc IIIC T125°C Dc IP65 zone 22

ATEX II 3G Ex ec IIC T3 Gc zone 2

Sur demande, est également possible l'exécution (Ex) ATEX II 3G Ex ec IIC T4 Gc.

Légende

II = Groupe d'appartenance (utilisation en surface) ;

3 = Catégorie de protection ;

comprend les équipements conçus pour fonctionner conformément aux paramètres de fonctionnement du fabricant et fournir un niveau normal de protection; ils peuvent être utilisés uniquement dans des zones classées 2 ou 22 poussières non conductrices.

D = Poussière pour la zone d'installation de Dc (zona 22);

G = Gaz pour la zone d'installation de Gc (zona 2);

tc / ec = mode de protection;

IIIC / IIC = = groupe d'équipements appartenant à la nature de l'atmosphère explosive;

T135°C = température maximale de surface pour les atmosphères poussiéreuses;

T3 / T4 = classe de température pour les atmosphères gazeuses

Pour les applications avec onduleurs, il est toujours nécessaire de connecter les sondes de température fournies pour respecter les classes thermiques indiquées dans le marquage.

L'acheteur du produit sera responsable de l'adoption des mesures techniques et organisationnelles appropriées et de l'évaluation de tout risque éventuel d'explosion pour la santé et la sécurité des travailleurs dans des zones potentiellement explosives (directive 99/92/CE).

À la réception du moteur électrique, assurez-vous qu'il n'y a pas de dommages ou d'anomalies.

Avant de démarrer le moteur, vérifier les données sur la plaque, lire attentivement le manuel d'instructions (fourni avec le moteur) et vérifier son adéquation à l'application requise.

10) DONNÉES TECHNIQUES PLAQUES ADDITIONNELLES

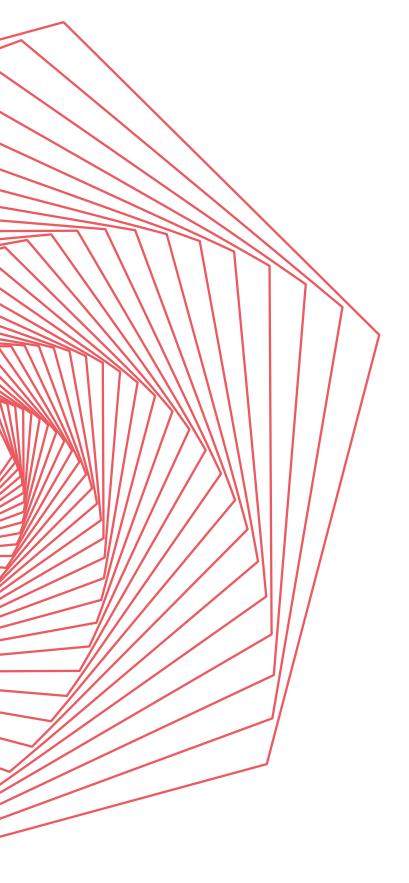
- ▶ Double plaque
- ▶ Plaque en acier inox
- ▶ Informations complémentaires sur la plaque et sur l'étiquette
- d'emballage
- ▶ Certificat d'essai
- Document avec données électriques
- Document avec dessin avec valeurs

NOTE	NOTE

NOTE	

SEIPEE S.p.A

Sede Amm.va e Operativa: Via Ferrari, 4


Sede Legale: Viottolo Croce, 1

41011 Campogalliano (M0) - Italy Tel. +39.059 850108 - Fax. +39.059.850128

sito internet: www.seipee.it

www.seipee.it

SEIPEE S.p.A


Sede Amm.va e Operativa Via Ferrari, 4

Sede Legale: Viottolo Croce, 1 41011 Campogalliano (MO) - Italy

Tel. +39.059 850108 - Fax. +39.059.850128 Sito: www.seipee.it | Email: seipee@seipee.it

P.Iva: 00185010360

